Cargando…
Bayesian Fully Convolutional Networks for Brain Image Registration
The purpose of medical image registration is to find geometric transformations that align two medical images so that the corresponding voxels on two images are spatially consistent. Nonrigid medical image registration is a key step in medical image processing, such as image comparison, data fusion,...
Autores principales: | Cui, Kunpeng, Fu, Panpan, Li, Yinghao, Lin, Yusong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8331272/ https://www.ncbi.nlm.nih.gov/pubmed/34354807 http://dx.doi.org/10.1155/2021/5528160 |
Ejemplares similares
-
DeepMapi: a Fully Automatic Registration Method for Mesoscopic Optical Brain Images Using Convolutional Neural Networks
por: Ni, Hong, et al.
Publicado: (2020) -
MDReg‐Net: Multi‐resolution diffeomorphic image registration using fully convolutional networks with deep self‐supervision
por: Li, Hongming, et al.
Publicado: (2022) -
3D Ultrasonic Brain Imaging with Deep Learning Based on Fully Convolutional Networks
por: Ren, Jiahao, et al.
Publicado: (2023) -
Weakly-supervised convolutional neural networks for multimodal image registration
por: Hu, Yipeng, et al.
Publicado: (2018) -
Brain CT registration using hybrid supervised convolutional neural network
por: Yuan, Hongmei, et al.
Publicado: (2021)