Cargando…
Forecasting Time-Series Energy Data in Buildings Using an Additive Artificial Intelligence Model for Improving Energy Efficiency
Building energy efficiency is important because buildings consume a significant energy amount. The study proposed additive artificial neural networks (AANNs) for predicting energy use in residential buildings. A dataset in hourly resolution was used to evaluate the AANNs model, which was collected f...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8331294/ https://www.ncbi.nlm.nih.gov/pubmed/34354744 http://dx.doi.org/10.1155/2021/6028573 |
Sumario: | Building energy efficiency is important because buildings consume a significant energy amount. The study proposed additive artificial neural networks (AANNs) for predicting energy use in residential buildings. A dataset in hourly resolution was used to evaluate the AANNs model, which was collected from a residential building with a solar photovoltaic system. The proposed AANNs model achieved good predictive accuracy with 14.04% in mean absolute percentage error (MAPE) and 111.98 Watt-hour in the mean absolute error (MAE). Compared to the support vector regression (SVR), the AANNs model can significantly improve the accuracy which was 103.75% in MAPE. Compared to the ANNs model, accuracy improvement percentage by the AANNs model was 4.6% in MAPE. The AANNs model was the most effective forecasting model among the investigated models in predicting energy consumption, which provides building managers with a useful tool to improve energy efficiency in buildings. |
---|