Cargando…
An integrated approach of field, weather, and satellite data for monitoring maize phenology
Efficient, more accurate reporting of maize (Zea mays L.) phenology, crop condition, and progress is crucial for agronomists and policy makers. Integration of satellite imagery with machine learning models has shown great potential to improve crop classification and facilitate in-season phenological...
Autores principales: | Nieto, Luciana, Schwalbert, Raí, Prasad, P. V. Vara, Olson, Bradley J. S. C., Ciampitti, Ignacio A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8333045/ https://www.ncbi.nlm.nih.gov/pubmed/34344979 http://dx.doi.org/10.1038/s41598-021-95253-7 |
Ejemplares similares
-
Maize Yield and Planting Date Relationship: A Synthesis-Analysis for US High-Yielding Contest-Winner and Field Research Data
por: Long, Nguyen V., et al.
Publicado: (2017) -
Winter Wheat Yield Response to Plant Density as a Function of Yield Environment and Tillering Potential: A Review and Field Studies
por: Bastos, Leonardo M., et al.
Publicado: (2020) -
An Optical Sensor Network for Vegetation Phenology Monitoring and Satellite Data Calibration
por: Eklundh, Lars, et al.
Publicado: (2011) -
Satellite-derived mineral mapping and monitoring of weathering, deposition and erosion
por: Cudahy, Thomas, et al.
Publicado: (2016) -
Historical Synthesis-Analysis of Changes in Grain Nitrogen Dynamics in Sorghum
por: Ciampitti, Ignacio A., et al.
Publicado: (2016)