Cargando…

Investigation on CT characterization of pore structure in nylon-uncured rubber composite from a microscopic view

In order to construct the geometric models characterizing the real micro pore-fracture structures of nylon-uncured rubber composite, and further compare the distribution law in the pore-fracture of solid (nylon)-gas (pore) two-phases with that of solid (nylon)-viscoelastic body (rubber)-gas (pore) t...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yong, Chi, Yanmeng, Han, Shanling, Miao, Yanan, Chen, Long
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8333100/
https://www.ncbi.nlm.nih.gov/pubmed/34344938
http://dx.doi.org/10.1038/s41598-021-95178-1
Descripción
Sumario:In order to construct the geometric models characterizing the real micro pore-fracture structures of nylon-uncured rubber composite, and further compare the distribution law in the pore-fracture of solid (nylon)-gas (pore) two-phases with that of solid (nylon)-viscoelastic body (rubber)-gas (pore) three-phases composite, in this paper, the X-ray three-dimensional (3D) microscope is applied for the nylon material and nylon-rubber composite respectively. By employing the 3D visualization software (Avizo), three-dimensional reconstruction and pore-fracture network model is realized, where the quantitative statistics and comparative analysis are carried out. The results demonstrate that the pore/throat number of nylon material accounting for 20.8%/33.9% are the largest when the pore/throat radius is in the range of 3–4 μm/1–2 μm, respectively, however, the pore/throat number of nylon-rubber composite with the radius 3–4 μm/1–2 μm occupies merely 5.49%/11.3%. Furthermore, the average pore radius of nylon material is believed as larger than that of nylon-rubber composite based on the pore network model, where the pore/throat surface area and pore/throat volume have perfect consistent patterns with that of pore radius. This work will offer a theoretical basis for the investigation of gas seepage capability discrepancy between the solid (nylon) one-phase and solid (nylon)-viscoelastic body (rubber) two-phases.