Cargando…

Chemical interplay and complementary adaptative strategies toggle bacterial antagonism and co-existence

Bacterial communities are in a continuous adaptive and evolutionary race for survival. In this work we expand our knowledge on the chemical interplay and specific mutations that modulate the transition from antagonism to co-existence between two plant-beneficial bacteria, Pseudomonas chlororaphis PC...

Descripción completa

Detalles Bibliográficos
Autores principales: Molina-Santiago, Carlos, Vela-Corcía, David, Petras, Daniel, Díaz-Martínez, Luis, Pérez-Lorente, Alicia Isabel, Sopeña-Torres, Sara, Pearson, John, Caraballo-Rodríguez, Andrés Mauricio, Dorrestein, Pieter C., de Vicente, Antonio, Romero, Diego
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8333196/
https://www.ncbi.nlm.nih.gov/pubmed/34320359
http://dx.doi.org/10.1016/j.celrep.2021.109449
_version_ 1783732982654173184
author Molina-Santiago, Carlos
Vela-Corcía, David
Petras, Daniel
Díaz-Martínez, Luis
Pérez-Lorente, Alicia Isabel
Sopeña-Torres, Sara
Pearson, John
Caraballo-Rodríguez, Andrés Mauricio
Dorrestein, Pieter C.
de Vicente, Antonio
Romero, Diego
author_facet Molina-Santiago, Carlos
Vela-Corcía, David
Petras, Daniel
Díaz-Martínez, Luis
Pérez-Lorente, Alicia Isabel
Sopeña-Torres, Sara
Pearson, John
Caraballo-Rodríguez, Andrés Mauricio
Dorrestein, Pieter C.
de Vicente, Antonio
Romero, Diego
author_sort Molina-Santiago, Carlos
collection PubMed
description Bacterial communities are in a continuous adaptive and evolutionary race for survival. In this work we expand our knowledge on the chemical interplay and specific mutations that modulate the transition from antagonism to co-existence between two plant-beneficial bacteria, Pseudomonas chlororaphis PCL1606 and Bacillus amyloliquefaciens FZB42. We reveal that the bacteriostatic activity of bacillaene produced by Bacillus relies on an interaction with the protein elongation factor FusA of P. chlororaphis and how mutations in this protein lead to tolerance to bacillaene and other protein translation inhibitors. Additionally, we describe how the unspecific tolerance of B. amyloliquefaciens to antimicrobials associated with mutations in the glycerol kinase GlpK is provoked by a decrease of Bacillus cell membrane permeability, among other pleiotropic responses. We conclude that nutrient specialization and mutations in basic biological functions are bacterial adaptive dynamics that lead to the coexistence of two primary competitive bacterial species rather than their mutual eradication.
format Online
Article
Text
id pubmed-8333196
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Cell Press
record_format MEDLINE/PubMed
spelling pubmed-83331962021-08-09 Chemical interplay and complementary adaptative strategies toggle bacterial antagonism and co-existence Molina-Santiago, Carlos Vela-Corcía, David Petras, Daniel Díaz-Martínez, Luis Pérez-Lorente, Alicia Isabel Sopeña-Torres, Sara Pearson, John Caraballo-Rodríguez, Andrés Mauricio Dorrestein, Pieter C. de Vicente, Antonio Romero, Diego Cell Rep Article Bacterial communities are in a continuous adaptive and evolutionary race for survival. In this work we expand our knowledge on the chemical interplay and specific mutations that modulate the transition from antagonism to co-existence between two plant-beneficial bacteria, Pseudomonas chlororaphis PCL1606 and Bacillus amyloliquefaciens FZB42. We reveal that the bacteriostatic activity of bacillaene produced by Bacillus relies on an interaction with the protein elongation factor FusA of P. chlororaphis and how mutations in this protein lead to tolerance to bacillaene and other protein translation inhibitors. Additionally, we describe how the unspecific tolerance of B. amyloliquefaciens to antimicrobials associated with mutations in the glycerol kinase GlpK is provoked by a decrease of Bacillus cell membrane permeability, among other pleiotropic responses. We conclude that nutrient specialization and mutations in basic biological functions are bacterial adaptive dynamics that lead to the coexistence of two primary competitive bacterial species rather than their mutual eradication. Cell Press 2021-07-27 /pmc/articles/PMC8333196/ /pubmed/34320359 http://dx.doi.org/10.1016/j.celrep.2021.109449 Text en © 2021 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Molina-Santiago, Carlos
Vela-Corcía, David
Petras, Daniel
Díaz-Martínez, Luis
Pérez-Lorente, Alicia Isabel
Sopeña-Torres, Sara
Pearson, John
Caraballo-Rodríguez, Andrés Mauricio
Dorrestein, Pieter C.
de Vicente, Antonio
Romero, Diego
Chemical interplay and complementary adaptative strategies toggle bacterial antagonism and co-existence
title Chemical interplay and complementary adaptative strategies toggle bacterial antagonism and co-existence
title_full Chemical interplay and complementary adaptative strategies toggle bacterial antagonism and co-existence
title_fullStr Chemical interplay and complementary adaptative strategies toggle bacterial antagonism and co-existence
title_full_unstemmed Chemical interplay and complementary adaptative strategies toggle bacterial antagonism and co-existence
title_short Chemical interplay and complementary adaptative strategies toggle bacterial antagonism and co-existence
title_sort chemical interplay and complementary adaptative strategies toggle bacterial antagonism and co-existence
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8333196/
https://www.ncbi.nlm.nih.gov/pubmed/34320359
http://dx.doi.org/10.1016/j.celrep.2021.109449
work_keys_str_mv AT molinasantiagocarlos chemicalinterplayandcomplementaryadaptativestrategiestogglebacterialantagonismandcoexistence
AT velacorciadavid chemicalinterplayandcomplementaryadaptativestrategiestogglebacterialantagonismandcoexistence
AT petrasdaniel chemicalinterplayandcomplementaryadaptativestrategiestogglebacterialantagonismandcoexistence
AT diazmartinezluis chemicalinterplayandcomplementaryadaptativestrategiestogglebacterialantagonismandcoexistence
AT perezlorentealiciaisabel chemicalinterplayandcomplementaryadaptativestrategiestogglebacterialantagonismandcoexistence
AT sopenatorressara chemicalinterplayandcomplementaryadaptativestrategiestogglebacterialantagonismandcoexistence
AT pearsonjohn chemicalinterplayandcomplementaryadaptativestrategiestogglebacterialantagonismandcoexistence
AT caraballorodriguezandresmauricio chemicalinterplayandcomplementaryadaptativestrategiestogglebacterialantagonismandcoexistence
AT dorresteinpieterc chemicalinterplayandcomplementaryadaptativestrategiestogglebacterialantagonismandcoexistence
AT devicenteantonio chemicalinterplayandcomplementaryadaptativestrategiestogglebacterialantagonismandcoexistence
AT romerodiego chemicalinterplayandcomplementaryadaptativestrategiestogglebacterialantagonismandcoexistence