Cargando…
Using normative modelling to detect disease progression in mild cognitive impairment and Alzheimer’s disease in a cross-sectional multi-cohort study
Normative modelling is an emerging method for quantifying how individuals deviate from the healthy populational pattern. Several machine learning models have been implemented to develop normative models to investigate brain disorders, including regression, support vector machines and Gaussian proces...
Autores principales: | Pinaya, Walter H. L., Scarpazza, Cristina, Garcia-Dias, Rafael, Vieira, Sandra, Baecker, Lea, F da Costa, Pedro, Redolfi, Alberto, Frisoni, Giovanni B., Pievani, Michela, Calhoun, Vince D., Sato, João R., Mechelli, Andrea |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8333350/ https://www.ncbi.nlm.nih.gov/pubmed/34344910 http://dx.doi.org/10.1038/s41598-021-95098-0 |
Ejemplares similares
-
Brain age prediction: A comparison between machine learning models using region‐ and voxel‐based morphometric data
por: Baecker, Lea, et al.
Publicado: (2021) -
Machine learning for brain age prediction: Introduction to methods and clinical applications
por: Baecker, Lea, et al.
Publicado: (2021) -
Translating research findings into clinical practice: a systematic and critical review of neuroimaging-based clinical tools for brain disorders
por: Scarpazza, C., et al.
Publicado: (2020) -
Using deep autoencoders to identify abnormal brain structural patterns in neuropsychiatric disorders: A large‐scale multi‐sample study
por: Pinaya, Walter H. L., et al.
Publicado: (2018) -
Neuroharmony: A new tool for harmonizing volumetric MRI data from unseen scanners
por: Garcia-Dias, Rafael, et al.
Publicado: (2020)