Cargando…

A Deep Learning-Based Approach to Video-Based Eye Tracking for Human Psychophysics

Real-time gaze tracking provides crucial input to psychophysics studies and neuromarketing applications. Many of the modern eye-tracking solutions are expensive mainly due to the high-end processing hardware specialized for processing infrared-camera pictures. Here, we introduce a deep learning-base...

Descripción completa

Detalles Bibliográficos
Autores principales: Zdarsky, Niklas, Treue, Stefan, Esghaei, Moein
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8333872/
https://www.ncbi.nlm.nih.gov/pubmed/34366813
http://dx.doi.org/10.3389/fnhum.2021.685830
Descripción
Sumario:Real-time gaze tracking provides crucial input to psychophysics studies and neuromarketing applications. Many of the modern eye-tracking solutions are expensive mainly due to the high-end processing hardware specialized for processing infrared-camera pictures. Here, we introduce a deep learning-based approach which uses the video frames of low-cost web cameras. Using DeepLabCut (DLC), an open-source toolbox for extracting points of interest from videos, we obtained facial landmarks critical to gaze location and estimated the point of gaze on a computer screen via a shallow neural network. Tested for three extreme poses, this architecture reached a median error of about one degree of visual angle. Our results contribute to the growing field of deep-learning approaches to eye-tracking, laying the foundation for further investigation by researchers in psychophysics or neuromarketing.