Cargando…

Tumour‐derived substrate‐adherent cells promote neuroblastoma survival through secreted trophic factors

Neuroblastoma (NB) is the most common extracranial solid tumour in children. NB is highly heterogeneous and is comprised of a mixture of neuroblastic cancer cells and stromal cells. We previously reported that N‐type cells (neuroblastic cells) and S‐type cells (substrate‐adherent cells) in the SK‐N‐...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Jing, Wang, Yubing, Li, Lisha, Or, Penelope M.‐Y., Wai Wong, Chi, Liu, Tian, Ho, Wayne L.H., Chan, Andrew M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8334291/
https://www.ncbi.nlm.nih.gov/pubmed/33932101
http://dx.doi.org/10.1002/1878-0261.12969
Descripción
Sumario:Neuroblastoma (NB) is the most common extracranial solid tumour in children. NB is highly heterogeneous and is comprised of a mixture of neuroblastic cancer cells and stromal cells. We previously reported that N‐type cells (neuroblastic cells) and S‐type cells (substrate‐adherent cells) in the SK‐N‐SH cell line shared almost identical genetic backgrounds. Sublines of N‐ and S‐type cells were isolated from an early passage (P35) of SK‐N‐SH. Sequencing analysis revealed that all sublines harboured the anaplastic lymphoma kinase (ALK) F1174L mutation, indicating that they were tumour derived. Surprisingly, over 74% resembled S‐type cells. In coculture experiments, S‐type cells protected N‐type cells from apoptosis induced by the oncogenic ALK inhibitor TAE684. Western blotting analyses showed that ALK, protein kinase A (AKT) and STAT3 signalling were stimulated in the cocultures. Furthermore, the conditioned medium from S‐type cells activated these downstream signalling molecules in the N‐type cells. The activation of STAT3 in the N‐type cells was ALK‐independent, while AKT was regulated by the ALK activation status. To identify the responsible soluble factors, we used a combination of transcriptomic and proteomic analysis and found that plasminogen activator inhibitor 1, secreted protein acidic and cysteine rich, periostin and galectin‐1 were potential mediators of STAT3 signalling. The addition of recombinant proteins to the tumour cells treated with the ALK inhibitor partially enhanced cell viability. Overall, the tumour‐derived S‐type cells prevented apoptosis in the N‐type cells via ALK‐independent STAT3 activation triggered by secreted factors. The inhibition of these factors in combination with ALK inhibition could provide a new direction for targeted therapies to treat high‐risk NB.