Cargando…

A quantitative analysis of extension and distribution of lung injury in COVID-19: a prospective study based on chest computed tomography

BACKGROUND: Typical features differentiate COVID-19-associated lung injury from acute respiratory distress syndrome. The clinical role of chest computed tomography (CT) in describing the progression of COVID-19-associated lung injury remains to be clarified. We investigated in COVID-19 patients the...

Descripción completa

Detalles Bibliográficos
Autores principales: Pellegrini, Mariangela, Larina, Aleksandra, Mourtos, Evangelos, Frithiof, Robert, Lipcsey, Miklos, Hultström, Michael, Segelsjö, Monica, Hansen, Tomas, Perchiazzi, Gaetano
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8334337/
https://www.ncbi.nlm.nih.gov/pubmed/34348797
http://dx.doi.org/10.1186/s13054-021-03685-4
Descripción
Sumario:BACKGROUND: Typical features differentiate COVID-19-associated lung injury from acute respiratory distress syndrome. The clinical role of chest computed tomography (CT) in describing the progression of COVID-19-associated lung injury remains to be clarified. We investigated in COVID-19 patients the regional distribution of lung injury and the influence of clinical and laboratory features on its progression. METHODS: This was a prospective study. For each CT, twenty images, evenly spaced along the cranio-caudal axis, were selected. For regional analysis, each CT image was divided into three concentric subpleural regions of interest and four quadrants. Hyper-, normally, hypo- and non-inflated lung compartments were defined. Nonparametric tests were used for hypothesis testing (α = 0.05). Spearman correlation test was used to detect correlations between lung compartments and clinical features. RESULTS: Twenty-three out of 111 recruited patients were eligible for further analysis. Five hundred-sixty CT images were analyzed. Lung injury, composed by hypo- and non-inflated areas, was significantly more represented in subpleural than in core lung regions. A secondary, centripetal spread of lung injury was associated with exposure to mechanical ventilation (p < 0.04), longer spontaneous breathing (more than 14 days, p < 0.05) and non-protective tidal volume (p < 0.04). Positive fluid balance (p < 0.01), high plasma D-dimers (p < 0.01) and ferritin (p < 0.04) were associated with increased lung injury. CONCLUSIONS: In a cohort of COVID-19 patients with severe respiratory failure, a predominant subpleural distribution of lung injury is observed. Prolonged spontaneous breathing and high tidal volumes, both causes of patient self-induced lung injury, are associated to an extensive involvement of more central regions. Positive fluid balance, inflammation and thrombosis are associated with lung injury. Trial registration Study registered a priori the 20th of March, 2020. Clinical Trials ID NCT04316884. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13054-021-03685-4.