Cargando…

Adsorption of neutral red dye by chitosan and activated carbon composite films

Research indicates the use of adsorbent materials to remove pollutants from wastewater and effluents, which can be obtained from renewable materials such as biomass, biopolymers (chitosan) or composites. Thus, the objective of this work was to produce and evaluate activated carbon (AC) and chitosan...

Descripción completa

Detalles Bibliográficos
Autores principales: de Freitas, Fabiana Paiva, Carvalho, Ana Márcia Macedo Ladeira, Carneiro, Angélica de Cássia Oliveira, de Magalhães, Mateus Alves, Xisto, Mariana Fonseca, Canal, Wagner Davel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8334384/
https://www.ncbi.nlm.nih.gov/pubmed/34381895
http://dx.doi.org/10.1016/j.heliyon.2021.e07629
Descripción
Sumario:Research indicates the use of adsorbent materials to remove pollutants from wastewater and effluents, which can be obtained from renewable materials such as biomass, biopolymers (chitosan) or composites. Thus, the objective of this work was to produce and evaluate activated carbon (AC) and chitosan composite films as adsorbents of neutral red dye. AC films were produced using CO(2) and water vapor. The variables of the activation process were time (1 and 2 h) and temperature (600 and 750 °C). Five films were produced, with one pure chitosan (T1) film and four activated carbon with chitosan films (T2, T3, T4 and T5). The T2 film refers to activated carbon produced at 600 °C for 1 h + chitosan, T3 to activated carbon produced at 600 °C for 2 h + chitosan, T4 to activated carbon produced at 750 °C for 1 h + chitosan and T5 to activated carbon produced at 750 °C for 2 h + chitosan. The T5 film increased its adsorption capacity by approximately 87% and its removal efficiency of neutral red dye by 43% compared to T1. The presence of activated carbon in the films provided an increase in the adsorption capacity of the neutral red dye.