Cargando…

Chest CT texture-based radiomics analysis in differentiating COVID-19 from other interstitial pneumonia

PURPOSE: To evaluate the potential role of texture-based radiomics analysis in differentiating Coronavirus Disease-19 (COVID-19) pneumonia from pneumonia of other etiology on Chest CT. MATERIALS AND METHODS: One hundred and twenty consecutive patients admitted to Emergency Department, from March 8,...

Descripción completa

Detalles Bibliográficos
Autores principales: Caruso, Damiano, Pucciarelli, Francesco, Zerunian, Marta, Ganeshan, Balaji, De Santis, Domenico, Polici, Michela, Rucci, Carlotta, Polidori, Tiziano, Guido, Gisella, Bracci, Benedetta, Benvenga, Antonella, Barbato, Luca, Laghi, Andrea
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Milan 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8335460/
https://www.ncbi.nlm.nih.gov/pubmed/34347270
http://dx.doi.org/10.1007/s11547-021-01402-3
Descripción
Sumario:PURPOSE: To evaluate the potential role of texture-based radiomics analysis in differentiating Coronavirus Disease-19 (COVID-19) pneumonia from pneumonia of other etiology on Chest CT. MATERIALS AND METHODS: One hundred and twenty consecutive patients admitted to Emergency Department, from March 8, 2020, to April 25, 2020, with suspicious of COVID-19 that underwent Chest CT, were retrospectively analyzed. All patients presented CT findings indicative for interstitial pneumonia. Sixty patients with positive COVID-19 real-time reverse transcription polymerase chain reaction (RT-PCR) and 60 patients with negative COVID-19 RT-PCR were enrolled. CT texture analysis (CTTA) was manually performed using dedicated software by two radiologists in consensus and textural features on filtered and unfiltered images were extracted as follows: mean intensity, standard deviation (SD), entropy, mean of positive pixels (MPP), skewness, and kurtosis. Nonparametric Mann–Whitney test assessed CTTA ability to differentiate positive from negative COVID-19 patients. Diagnostic criteria were obtained from receiver operating characteristic (ROC) curves. RESULTS: Unfiltered CTTA showed lower values of mean intensity, MPP, and kurtosis in COVID-19 positive patients compared to negative patients (p = 0.041, 0.004, and 0.002, respectively). On filtered images, fine and medium texture scales were significant differentiators; fine texture scale being most significant where COVID-19 positive patients had lower SD (p = 0.004) and MPP (p = 0.004) compared to COVID-19 negative patients. A combination of the significant texture features could identify the patients with positive COVID-19 from negative COVID-19 with a sensitivity of 60% and specificity of 80% (p = 0.001). CONCLUSIONS: Preliminary evaluation suggests potential role of CTTA in distinguishing COVID-19 pneumonia from other interstitial pneumonia on Chest CT.