Cargando…
CTRP13 Protects H9c2 Cells Against Hypoxia/Reoxygenation (H/R)-Induced Injury Via Regulating the AMPK/Nrf2/ARE Signaling Pathway
Myocardial infarction (MI) is identified as the myocardial necrosis due to myocardial ischemia/reperfusion (I/R) injury and remains a leading cause of mortality. C1q/TNF-related protein 13 (CTRP13) is a member of CTRP family that has been found to be involved in coronary artery disease (CAD). Howeve...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8335840/ https://www.ncbi.nlm.nih.gov/pubmed/34338573 http://dx.doi.org/10.1177/09636897211033275 |
_version_ | 1783733207145906176 |
---|---|
author | Jiang, Weifeng Song, Jungang Zhang, Suitao Ye, Yanyan Wang, Jun Zhang, Yilin |
author_facet | Jiang, Weifeng Song, Jungang Zhang, Suitao Ye, Yanyan Wang, Jun Zhang, Yilin |
author_sort | Jiang, Weifeng |
collection | PubMed |
description | Myocardial infarction (MI) is identified as the myocardial necrosis due to myocardial ischemia/reperfusion (I/R) injury and remains a leading cause of mortality. C1q/TNF-related protein 13 (CTRP13) is a member of CTRP family that has been found to be involved in coronary artery disease (CAD). However, the role of CTRP13 in MI remains unclear. We aimed to explore the functional role of CTRP13 in H9c2 cells exposed to hypoxia/reoxygenation (H/R). Our results demonstrated that H/R stimulation significantly decreased the expression of CTRP13 in H9c2 cells. H/R-induced an increase in ROS production and reductions in activities of SOD and CAT were prevented by CTRP13 overexpression but were aggravated by CTRP13 silencing. Moreover, CTRP13 overexpression could reverse the inductive effect of H/R on caspase-3 activity and bax expression, as well as the inhibitory effect of H/R on bcl-2 expression in H9c2 cells. However, CTRP13 silencing presented opposite effects with CTRP13 overexpression. Furthermore, CTRP13 overexpression enhanced the H/R-stimulated the expression levels of p-AMPK and nuclear Nrf2, and Nrf2 transcriptional activity. However, inhibition of AMPK reversed the CTRP13-mediated activation of Nrf2/ARE signaling and the cardiac-protective effect in H/R-exposed H9c2 cells. Additionally, silencing of Nrf2 reversed the protective effects of CTRP13 against H/R-stimulated oxidative stress and apoptosis in H9c2 cells. Finally, recombinant CTRP13 protein attenuated myocardial I/R-induced injury in rats. Taken together, these findings indicated that CTRP13 protected H9c2 cells from H/R-stimulated oxidative stress and apoptosis via regulating the AMPK/Nrf2/ARE signaling pathway. Our results provided evidence for the therapeutic potential of CTRP13 in myocardial I/R injury. |
format | Online Article Text |
id | pubmed-8335840 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | SAGE Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-83358402021-08-09 CTRP13 Protects H9c2 Cells Against Hypoxia/Reoxygenation (H/R)-Induced Injury Via Regulating the AMPK/Nrf2/ARE Signaling Pathway Jiang, Weifeng Song, Jungang Zhang, Suitao Ye, Yanyan Wang, Jun Zhang, Yilin Cell Transplant Original Article Myocardial infarction (MI) is identified as the myocardial necrosis due to myocardial ischemia/reperfusion (I/R) injury and remains a leading cause of mortality. C1q/TNF-related protein 13 (CTRP13) is a member of CTRP family that has been found to be involved in coronary artery disease (CAD). However, the role of CTRP13 in MI remains unclear. We aimed to explore the functional role of CTRP13 in H9c2 cells exposed to hypoxia/reoxygenation (H/R). Our results demonstrated that H/R stimulation significantly decreased the expression of CTRP13 in H9c2 cells. H/R-induced an increase in ROS production and reductions in activities of SOD and CAT were prevented by CTRP13 overexpression but were aggravated by CTRP13 silencing. Moreover, CTRP13 overexpression could reverse the inductive effect of H/R on caspase-3 activity and bax expression, as well as the inhibitory effect of H/R on bcl-2 expression in H9c2 cells. However, CTRP13 silencing presented opposite effects with CTRP13 overexpression. Furthermore, CTRP13 overexpression enhanced the H/R-stimulated the expression levels of p-AMPK and nuclear Nrf2, and Nrf2 transcriptional activity. However, inhibition of AMPK reversed the CTRP13-mediated activation of Nrf2/ARE signaling and the cardiac-protective effect in H/R-exposed H9c2 cells. Additionally, silencing of Nrf2 reversed the protective effects of CTRP13 against H/R-stimulated oxidative stress and apoptosis in H9c2 cells. Finally, recombinant CTRP13 protein attenuated myocardial I/R-induced injury in rats. Taken together, these findings indicated that CTRP13 protected H9c2 cells from H/R-stimulated oxidative stress and apoptosis via regulating the AMPK/Nrf2/ARE signaling pathway. Our results provided evidence for the therapeutic potential of CTRP13 in myocardial I/R injury. SAGE Publications 2021-08-02 /pmc/articles/PMC8335840/ /pubmed/34338573 http://dx.doi.org/10.1177/09636897211033275 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by-nc/4.0/This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
spellingShingle | Original Article Jiang, Weifeng Song, Jungang Zhang, Suitao Ye, Yanyan Wang, Jun Zhang, Yilin CTRP13 Protects H9c2 Cells Against Hypoxia/Reoxygenation (H/R)-Induced Injury Via Regulating the AMPK/Nrf2/ARE Signaling Pathway |
title | CTRP13 Protects H9c2 Cells Against Hypoxia/Reoxygenation (H/R)-Induced Injury Via Regulating the AMPK/Nrf2/ARE Signaling Pathway |
title_full | CTRP13 Protects H9c2 Cells Against Hypoxia/Reoxygenation (H/R)-Induced Injury Via Regulating the AMPK/Nrf2/ARE Signaling Pathway |
title_fullStr | CTRP13 Protects H9c2 Cells Against Hypoxia/Reoxygenation (H/R)-Induced Injury Via Regulating the AMPK/Nrf2/ARE Signaling Pathway |
title_full_unstemmed | CTRP13 Protects H9c2 Cells Against Hypoxia/Reoxygenation (H/R)-Induced Injury Via Regulating the AMPK/Nrf2/ARE Signaling Pathway |
title_short | CTRP13 Protects H9c2 Cells Against Hypoxia/Reoxygenation (H/R)-Induced Injury Via Regulating the AMPK/Nrf2/ARE Signaling Pathway |
title_sort | ctrp13 protects h9c2 cells against hypoxia/reoxygenation (h/r)-induced injury via regulating the ampk/nrf2/are signaling pathway |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8335840/ https://www.ncbi.nlm.nih.gov/pubmed/34338573 http://dx.doi.org/10.1177/09636897211033275 |
work_keys_str_mv | AT jiangweifeng ctrp13protectsh9c2cellsagainsthypoxiareoxygenationhrinducedinjuryviaregulatingtheampknrf2aresignalingpathway AT songjungang ctrp13protectsh9c2cellsagainsthypoxiareoxygenationhrinducedinjuryviaregulatingtheampknrf2aresignalingpathway AT zhangsuitao ctrp13protectsh9c2cellsagainsthypoxiareoxygenationhrinducedinjuryviaregulatingtheampknrf2aresignalingpathway AT yeyanyan ctrp13protectsh9c2cellsagainsthypoxiareoxygenationhrinducedinjuryviaregulatingtheampknrf2aresignalingpathway AT wangjun ctrp13protectsh9c2cellsagainsthypoxiareoxygenationhrinducedinjuryviaregulatingtheampknrf2aresignalingpathway AT zhangyilin ctrp13protectsh9c2cellsagainsthypoxiareoxygenationhrinducedinjuryviaregulatingtheampknrf2aresignalingpathway |