Cargando…

Two methoxy derivatives of resveratrol, 3,3′,4,5′-tetramethoxy-trans-stilbene and 3,4′,5-trimethoxy-trans-stilbene, suppress lipopolysaccharide-induced inflammation through inactivation of MAPK and NF-κB pathways in RAW 264.7 cells

BACKGROUND: 3,3′,4,5′-tetramethoxy-trans-stilbene (3,3′,4,5′-TMS) and 3,4′,5-trimethoxy-trans-stilbene (3,4′,5-TMS) are two methoxy derivatives of resveratrol. Previous researches have proved that resveratrol and its analogues have anti-inflammatory effect through suppressing mitogen-activated prote...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Chunxiu, Zhang, Xutao, Ruan, Cheng-Chao, Cheang, Wai San
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8335869/
https://www.ncbi.nlm.nih.gov/pubmed/34348746
http://dx.doi.org/10.1186/s13020-021-00480-9
_version_ 1783733212537683968
author Zhou, Chunxiu
Zhang, Xutao
Ruan, Cheng-Chao
Cheang, Wai San
author_facet Zhou, Chunxiu
Zhang, Xutao
Ruan, Cheng-Chao
Cheang, Wai San
author_sort Zhou, Chunxiu
collection PubMed
description BACKGROUND: 3,3′,4,5′-tetramethoxy-trans-stilbene (3,3′,4,5′-TMS) and 3,4′,5-trimethoxy-trans-stilbene (3,4′,5-TMS) are two methoxy derivatives of resveratrol. Previous researches have proved that resveratrol and its analogues have anti-inflammatory effect through suppressing mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling pathways. This study aims to study whether 3,3′,4,5′-TMS and 3,4′,5-TMS alleviate inflammation and the underlying mechanism. METHODS: RAW 264.7 macrophage cells were treated with lipopolysaccharide (LPS) to induce inflammation and pretreated with 3,3′,4,5′-TMS or 3,4′,5-TMS. Cell viability was measured with the 3-(4,5)-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Nitric oxide (NO) release was detected by Griess reagent. The secretions of pro-inflammatory cytokines were assessed by ELISA kits. Protein expressions of signaling molecules were determined by Western blotting. Reactive oxygen species (ROS) production was detected by fluorescence staining and malondialdehyde (MDA) assay. RESULTS: 3,3′,4,5′-TMS and 3,4′,5-TMS suppressed LPS-induced NO release and pro-inflammatory cytokines (IL-6 and TNF-α) secretions in a dose-dependent manner in RAW 264.7 cells. 3,3′,4,5′-TMS and 3,4′,5-TMS significantly down-regulated the LPS-induced expressions of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), and partially suppressed the activation of MAPK (phosphorylation of p38, JNK, ERK), and NF-κB (phosphorylation of IKKα/β, p65 and IκBα) signaling pathways; where phosphorylation of ERK and p65 was mildly but not significantly decreased by 3,3′,4,5′-TMS. LPS-induced NF-κB/p65 nuclear translocation was inhibited by both 3,3′,4,5′-TMS and 3,4′,5-TMS. Moreover, both resveratrol derivatives decreased the ROS levels. CONCLUSIONS: 3,3′,4,5′-TMS and 3,4′,5-TMS significantly suppress LPS-induced inflammation in RAW 264.7 cells through inhibition of MAPK and NF-κB signaling pathways and also provide anti-oxidative effect. This study reveals potential therapeutic applications of 3,3′,4,5′-TMS and 3,4′,5-TMS for inflammatory diseases.
format Online
Article
Text
id pubmed-8335869
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-83358692021-08-04 Two methoxy derivatives of resveratrol, 3,3′,4,5′-tetramethoxy-trans-stilbene and 3,4′,5-trimethoxy-trans-stilbene, suppress lipopolysaccharide-induced inflammation through inactivation of MAPK and NF-κB pathways in RAW 264.7 cells Zhou, Chunxiu Zhang, Xutao Ruan, Cheng-Chao Cheang, Wai San Chin Med Research BACKGROUND: 3,3′,4,5′-tetramethoxy-trans-stilbene (3,3′,4,5′-TMS) and 3,4′,5-trimethoxy-trans-stilbene (3,4′,5-TMS) are two methoxy derivatives of resveratrol. Previous researches have proved that resveratrol and its analogues have anti-inflammatory effect through suppressing mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling pathways. This study aims to study whether 3,3′,4,5′-TMS and 3,4′,5-TMS alleviate inflammation and the underlying mechanism. METHODS: RAW 264.7 macrophage cells were treated with lipopolysaccharide (LPS) to induce inflammation and pretreated with 3,3′,4,5′-TMS or 3,4′,5-TMS. Cell viability was measured with the 3-(4,5)-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Nitric oxide (NO) release was detected by Griess reagent. The secretions of pro-inflammatory cytokines were assessed by ELISA kits. Protein expressions of signaling molecules were determined by Western blotting. Reactive oxygen species (ROS) production was detected by fluorescence staining and malondialdehyde (MDA) assay. RESULTS: 3,3′,4,5′-TMS and 3,4′,5-TMS suppressed LPS-induced NO release and pro-inflammatory cytokines (IL-6 and TNF-α) secretions in a dose-dependent manner in RAW 264.7 cells. 3,3′,4,5′-TMS and 3,4′,5-TMS significantly down-regulated the LPS-induced expressions of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), and partially suppressed the activation of MAPK (phosphorylation of p38, JNK, ERK), and NF-κB (phosphorylation of IKKα/β, p65 and IκBα) signaling pathways; where phosphorylation of ERK and p65 was mildly but not significantly decreased by 3,3′,4,5′-TMS. LPS-induced NF-κB/p65 nuclear translocation was inhibited by both 3,3′,4,5′-TMS and 3,4′,5-TMS. Moreover, both resveratrol derivatives decreased the ROS levels. CONCLUSIONS: 3,3′,4,5′-TMS and 3,4′,5-TMS significantly suppress LPS-induced inflammation in RAW 264.7 cells through inhibition of MAPK and NF-κB signaling pathways and also provide anti-oxidative effect. This study reveals potential therapeutic applications of 3,3′,4,5′-TMS and 3,4′,5-TMS for inflammatory diseases. BioMed Central 2021-08-04 /pmc/articles/PMC8335869/ /pubmed/34348746 http://dx.doi.org/10.1186/s13020-021-00480-9 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research
Zhou, Chunxiu
Zhang, Xutao
Ruan, Cheng-Chao
Cheang, Wai San
Two methoxy derivatives of resveratrol, 3,3′,4,5′-tetramethoxy-trans-stilbene and 3,4′,5-trimethoxy-trans-stilbene, suppress lipopolysaccharide-induced inflammation through inactivation of MAPK and NF-κB pathways in RAW 264.7 cells
title Two methoxy derivatives of resveratrol, 3,3′,4,5′-tetramethoxy-trans-stilbene and 3,4′,5-trimethoxy-trans-stilbene, suppress lipopolysaccharide-induced inflammation through inactivation of MAPK and NF-κB pathways in RAW 264.7 cells
title_full Two methoxy derivatives of resveratrol, 3,3′,4,5′-tetramethoxy-trans-stilbene and 3,4′,5-trimethoxy-trans-stilbene, suppress lipopolysaccharide-induced inflammation through inactivation of MAPK and NF-κB pathways in RAW 264.7 cells
title_fullStr Two methoxy derivatives of resveratrol, 3,3′,4,5′-tetramethoxy-trans-stilbene and 3,4′,5-trimethoxy-trans-stilbene, suppress lipopolysaccharide-induced inflammation through inactivation of MAPK and NF-κB pathways in RAW 264.7 cells
title_full_unstemmed Two methoxy derivatives of resveratrol, 3,3′,4,5′-tetramethoxy-trans-stilbene and 3,4′,5-trimethoxy-trans-stilbene, suppress lipopolysaccharide-induced inflammation through inactivation of MAPK and NF-κB pathways in RAW 264.7 cells
title_short Two methoxy derivatives of resveratrol, 3,3′,4,5′-tetramethoxy-trans-stilbene and 3,4′,5-trimethoxy-trans-stilbene, suppress lipopolysaccharide-induced inflammation through inactivation of MAPK and NF-κB pathways in RAW 264.7 cells
title_sort two methoxy derivatives of resveratrol, 3,3′,4,5′-tetramethoxy-trans-stilbene and 3,4′,5-trimethoxy-trans-stilbene, suppress lipopolysaccharide-induced inflammation through inactivation of mapk and nf-κb pathways in raw 264.7 cells
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8335869/
https://www.ncbi.nlm.nih.gov/pubmed/34348746
http://dx.doi.org/10.1186/s13020-021-00480-9
work_keys_str_mv AT zhouchunxiu twomethoxyderivativesofresveratrol3345tetramethoxytransstilbeneand345trimethoxytransstilbenesuppresslipopolysaccharideinducedinflammationthroughinactivationofmapkandnfkbpathwaysinraw2647cells
AT zhangxutao twomethoxyderivativesofresveratrol3345tetramethoxytransstilbeneand345trimethoxytransstilbenesuppresslipopolysaccharideinducedinflammationthroughinactivationofmapkandnfkbpathwaysinraw2647cells
AT ruanchengchao twomethoxyderivativesofresveratrol3345tetramethoxytransstilbeneand345trimethoxytransstilbenesuppresslipopolysaccharideinducedinflammationthroughinactivationofmapkandnfkbpathwaysinraw2647cells
AT cheangwaisan twomethoxyderivativesofresveratrol3345tetramethoxytransstilbeneand345trimethoxytransstilbenesuppresslipopolysaccharideinducedinflammationthroughinactivationofmapkandnfkbpathwaysinraw2647cells