Cargando…

Noise constrains the evolution of call frequency contours in flowing water frogs: a comparative analysis in two clades

BACKGROUND: The acoustic adaptation hypothesis (AAH) states that signals should evolve towards an optimal transmission of the intended information from senders to intended receivers given the environmental constraints of the medium that they traverse. To date, most AAH studies have focused on the ef...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Longhui, Santos, Juan C., Wang, Jichao, Ran, Jianghong, Tang, Yezhong, Cui, Jianguo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8336270/
https://www.ncbi.nlm.nih.gov/pubmed/34348772
http://dx.doi.org/10.1186/s12983-021-00423-y
Descripción
Sumario:BACKGROUND: The acoustic adaptation hypothesis (AAH) states that signals should evolve towards an optimal transmission of the intended information from senders to intended receivers given the environmental constraints of the medium that they traverse. To date, most AAH studies have focused on the effect of stratified vegetation on signal propagation. These studies, based on the AAH, predict that acoustic signals should experience less attenuation and degradation where habitats are less acoustically complex. Here, we explored this effect by including an environmental noise dimension to test some AAH predictions in two clades of widespread amphibians (Bufonidae and Ranidae) that actively use acoustic signals for communication. By using data from 106 species in these clades, we focused on the characterization of the differences in dominant frequency (DF) and frequency contour (i.e., frequency modulation [FM] and harmonic performances) of mating calls and compared them between species that inhabit flowing-water or still-water environments. RESULTS: After including temperature, body size, habitat type and phylogenetic relationships, we found that DF differences among species were explained mostly by body size and habitat structure. We also showed that species living in lentic habitats tend to have advertisement calls characterized by well-defined FM and harmonics. Likewise, our results suggest that flowing-water habitats can constrain the evolutionary trajectories of the frequency-contour traits of advertisement calls in these anurans. CONCLUSIONS: Our results may support AAH predictions in frogs that vocalize in noisy habitats because flowing-water environments often produce persistent ambient noise. For instance, these anurans tend to generate vocalizations with less well-defined FM and harmonic traits. These findings may help us understand how noise in the environment can influence natural selection as it shapes acoustic signals in affected species. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12983-021-00423-y.