Cargando…
Technology of Two-dimensional Bioimpedance Analysis of the Human Body Composition
The BIA primary result sheets as a rule contain one-dimensional graphical scales with a selected area of normal values. In 1994, Piccoli et al. proposed BIVA, an alternative form of BIA data presentation, where two bioimpedance parameters are considered simultaneously as tolerance ellipses: resistan...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Sciendo
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8336308/ https://www.ncbi.nlm.nih.gov/pubmed/34413919 http://dx.doi.org/10.2478/joeb-2021-0004 |
Sumario: | The BIA primary result sheets as a rule contain one-dimensional graphical scales with a selected area of normal values. In 1994, Piccoli et al. proposed BIVA, an alternative form of BIA data presentation, where two bioimpedance parameters are considered simultaneously as tolerance ellipses: resistance and reactance normalized to height. The purpose of this study is to develop an approach to data analysis in body composition bioimpedance research in two-dimensional representations. The data of 1.124.668 patients aged 5 to 85 years who underwent a bioimpedance study in Russian Health Centers from 2009 to 2015 were used. Statistical programming in the R Studio environment was carried out to estimate two-dimensional distribution densities of pairs of body composition parameters for each year of life. The non-Gaussian distribution is found in most parameters of bioimpedance analysis of body composition for most ages (Lilliefors test, p-value << 0.0001). The slices of the actual two-dimensional distribution pairs of body composition parameters had an irregular shape. The authors of the article propose using the actually observed distribution for populations where numerous bioimpedance studies have already been carried out. Such technology can be called two-dimensional bioimpedance analysis of human body composition (2DBIA). The 2DBIA approach is clearer for practitioners and their patients due to the use of body composition parameters in addition to electrical impedance parameters. |
---|