Cargando…
Sch-net: a deep learning architecture for automatic detection of schizophrenia
BACKGROUND: Schizophrenia is a chronic and severe mental disease, which largely influences the daily life and work of patients. Clinically, schizophrenia with negative symptoms is usually misdiagnosed. The diagnosis is also dependent on the experience of clinicians. It is urgent to develop an object...
Autores principales: | Fu, Jia, Yang, Sen, He, Fei, He, Ling, Li, Yuanyuan, Zhang, Jing, Xiong, Xi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8336375/ https://www.ncbi.nlm.nih.gov/pubmed/34344372 http://dx.doi.org/10.1186/s12938-021-00915-2 |
Ejemplares similares
-
Combining SchNet and SHARC: The SchNarc Machine Learning
Approach for Excited-State Dynamics
por: Westermayr, Julia, et al.
Publicado: (2020) -
SchizoGoogLeNet: The GoogLeNet-Based Deep Feature Extraction Design for Automatic Detection of Schizophrenia
por: Siuly, Siuly, et al.
Publicado: (2022) -
HortNet417v1—A Deep-Learning Architecture for the Automatic Detection of Pot-Cultivated Peach Plant Water Stress
por: Islam, Md Parvez, et al.
Publicado: (2021) -
Automatic Detection and Counting of Wheat Spikelet Using Semi-Automatic Labeling and Deep Learning
por: Qiu, Ruicheng, et al.
Publicado: (2022) -
From Sound Perception to Automatic Detection of Schizophrenia: An EEG-Based Deep Learning Approach
por: Barros, Carla, et al.
Publicado: (2022)