Cargando…
Devaluation of Unchosen Options: A Bayesian Account of the Provenance and Maintenance of Overly Optimistic Expectations
Humans frequently overestimate the likelihood of desirable events while underestimating the likelihood of undesirable ones: a phenomenon known as unrealistic optimism. Previously, it was suggested that unrealistic optimism arises from asymmetric belief updating, with a relatively reduced coding of u...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8336429/ https://www.ncbi.nlm.nih.gov/pubmed/34355220 |
Sumario: | Humans frequently overestimate the likelihood of desirable events while underestimating the likelihood of undesirable ones: a phenomenon known as unrealistic optimism. Previously, it was suggested that unrealistic optimism arises from asymmetric belief updating, with a relatively reduced coding of undesirable information. Prior studies have shown that a reinforcement learning (RL) model with asymmetric learning rates (greater for a positive prediction error than a negative prediction error) could account for unrealistic optimism in a bandit task, in particular the tendency of human subjects to persistently choosing a single option when there are multiple equally good options. Here, we propose an alternative explanation of such persistent behavior, by modeling human behavior using a Bayesian hidden Markov model, the Dynamic Belief Model (DBM). We find that DBM captures human choice behavior better than the previously proposed asymmetric RL model. Whereas asymmetric RL attains a measure of optimism by giving better-than-expected outcomes higher learning weights compared to worse-than-expected outcomes, DBM does so by progressively devaluing the unchosen options, thus placing a greater emphasis on choice history independent of reward outcome (e.g. an oft-chosen option might continue to be preferred even if it has not been particularly rewarding), which has broadly been shown to underlie sequential effects in a variety of behavioral settings. Moreover, previous work showed that the devaluation of unchosen options in DBM helps to compensate for a default assumption of environmental non-stationarity, thus allowing the decision-maker to both be more adaptive in changing environments and still obtain near-optimal performance in stationary environments. Thus, the current work suggests both a novel rationale and mechanism for persistent behavior in bandit tasks. |
---|