Cargando…
PathCNN: interpretable convolutional neural networks for survival prediction and pathway analysis applied to glioblastoma
MOTIVATION: Convolutional neural networks (CNNs) have achieved great success in the areas of image processing and computer vision, handling grid-structured inputs and efficiently capturing local dependencies through multiple levels of abstraction. However, a lack of interpretability remains a key ba...
Autores principales: | Oh, Jung Hun, Choi, Wookjin, Ko, Euiseong, Kang, Mingon, Tannenbaum, Allen, Deasy, Joseph O |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8336441/ https://www.ncbi.nlm.nih.gov/pubmed/34252964 http://dx.doi.org/10.1093/bioinformatics/btab285 |
Ejemplares similares
-
Top Quark Tagging Using Convolutional Neural Network (CNN)
por: Beshr, Aya
Publicado: (2019) -
Interpretable deep neural network for cancer survival analysis by integrating genomic and clinical data
por: Hao, Jie, et al.
Publicado: (2019) -
Comparative approach to different convolutional neural network (CNN) architectures applied to human behavior detection
por: Shirabayashi, Juliana Verga, et al.
Publicado: (2023) -
Identification of biological correlates associated with respiratory failure in COVID-19
por: Oh, Jung Hun, et al.
Publicado: (2020) -
Improved prediction of drug-induced liver injury literature using natural language processing and machine learning methods
por: Oh, Jung Hun, et al.
Publicado: (2023)