Cargando…
KG4SL: knowledge graph neural network for synthetic lethality prediction in human cancers
MOTIVATION: Synthetic lethality (SL) is a promising gold mine for the discovery of anti-cancer drug targets. Wet-lab screening of SL pairs is afflicted with high cost, batch-effect, and off-target problems. Current computational methods for SL prediction include gene knock-out simulation, knowledge-...
Autores principales: | Wang, Shike, Xu, Fan, Li, Yunyang, Wang, Jie, Zhang, Ke, Liu, Yong, Wu, Min, Zheng, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8336442/ https://www.ncbi.nlm.nih.gov/pubmed/34252965 http://dx.doi.org/10.1093/bioinformatics/btab271 |
Ejemplares similares
-
Supervised biological network alignment with graph neural networks
por: Ding, Kerr, et al.
Publicado: (2023) -
Toward heterogeneous information fusion: bipartite graph convolutional networks for in silico drug repurposing
por: Wang, Zichen, et al.
Publicado: (2020) -
KR4SL: knowledge graph reasoning for explainable prediction of synthetic lethality
por: Zhang, Ke, et al.
Publicado: (2023) -
Graph transformation for enzymatic mechanisms
por: Andersen, Jakob L, et al.
Publicado: (2021) -
DeepCoVDR: deep transfer learning with graph transformer and cross-attention for predicting COVID-19 drug response
por: Huang, Zhijian, et al.
Publicado: (2023)