Cargando…
Weakly supervised learning of RNA modifications from low-resolution epitranscriptome data
MOTIVATION: Increasing evidence suggests that post-transcriptional ribonucleic acid (RNA) modifications regulate essential biomolecular functions and are related to the pathogenesis of various diseases. Precise identification of RNA modification sites is essential for understanding the regulatory me...
Autores principales: | Huang, Daiyun, Song, Bowen, Wei, Jingjue, Su, Jionglong, Coenen, Frans, Meng, Jia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8336446/ https://www.ncbi.nlm.nih.gov/pubmed/34252943 http://dx.doi.org/10.1093/bioinformatics/btab278 |
Ejemplares similares
-
EnHiC: learning fine-resolution Hi-C contact maps using a generative adversarial framework
por: Hu, Yangyang, et al.
Publicado: (2021) -
CProMG: controllable protein-oriented molecule generation with desired binding affinity and drug-like properties
por: Li, Jia-Ning, et al.
Publicado: (2023) -
Graph neural representational learning of RNA secondary structures for predicting RNA-protein interactions
por: Yan, Zichao, et al.
Publicado: (2020) -
Boosting the accuracy of protein secondary structure prediction through nearest neighbor search and method hybridization
por: Krieger, Spencer, et al.
Publicado: (2020) -
BIRD: identifying cell doublets via biallelic expression from single cells
por: Wainer-Katsir, Kerem, et al.
Publicado: (2020)