Cargando…

Exploring Transport Behavior in Hybrid Perovskites Solar Cells via Machine Learning Analysis of Environmental‐Dependent Impedance Spectroscopy

Hybrid organic–inorganic perovskites are one of the promising candidates for the next‐generation semiconductors due to their superlative optoelectronic properties. However, one of the limiting factors for potential applications is their chemical and structural instability in different environments....

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Dohyung, Muckley, Eric S., Creange, Nicole, Wan, Ting Hei, Ann, Myung Hyun, Quattrocchi, Emanuele, Vasudevan, Rama K., Kim, Jong H., Ciucci, Francesco, Ivanov, Ilia N., Kalinin, Sergei V., Ahmadi, Mahshid
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8336513/
https://www.ncbi.nlm.nih.gov/pubmed/34155825
http://dx.doi.org/10.1002/advs.202002510
_version_ 1783733335247290368
author Kim, Dohyung
Muckley, Eric S.
Creange, Nicole
Wan, Ting Hei
Ann, Myung Hyun
Quattrocchi, Emanuele
Vasudevan, Rama K.
Kim, Jong H.
Ciucci, Francesco
Ivanov, Ilia N.
Kalinin, Sergei V.
Ahmadi, Mahshid
author_facet Kim, Dohyung
Muckley, Eric S.
Creange, Nicole
Wan, Ting Hei
Ann, Myung Hyun
Quattrocchi, Emanuele
Vasudevan, Rama K.
Kim, Jong H.
Ciucci, Francesco
Ivanov, Ilia N.
Kalinin, Sergei V.
Ahmadi, Mahshid
author_sort Kim, Dohyung
collection PubMed
description Hybrid organic–inorganic perovskites are one of the promising candidates for the next‐generation semiconductors due to their superlative optoelectronic properties. However, one of the limiting factors for potential applications is their chemical and structural instability in different environments. Herein, the stability of (FAPbI(3))(0.85)(MAPbBr(3))(0.15) perovskite solar cell is explored in different atmospheres using impedance spectroscopy. An equivalent circuit model and distribution of relaxation times (DRTs) are used to effectively analyze impedance spectra. DRT is further analyzed via machine learning workflow based on the non‐negative matrix factorization of reconstructed relaxation time spectra. This exploration provides the interplay of charge transport dynamics and recombination processes under environment stimuli and illumination. The results reveal that in the dark, oxygen atmosphere induces an increased hole concentration with less ionic character while ionic motion is dominant under ambient air. Under 1 Sun illumination, the environment‐dependent impedance responses show a more striking effect compared with dark conditions. In this case, the increased transport resistance observed under oxygen atmosphere in equivalent circuit analysis arises due to interruption of photogenerated hole carriers. The results not only shed light on elucidating transport mechanisms of perovskite solar cells in different environments but also offer an effective interpretation of impedance responses.
format Online
Article
Text
id pubmed-8336513
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-83365132021-08-09 Exploring Transport Behavior in Hybrid Perovskites Solar Cells via Machine Learning Analysis of Environmental‐Dependent Impedance Spectroscopy Kim, Dohyung Muckley, Eric S. Creange, Nicole Wan, Ting Hei Ann, Myung Hyun Quattrocchi, Emanuele Vasudevan, Rama K. Kim, Jong H. Ciucci, Francesco Ivanov, Ilia N. Kalinin, Sergei V. Ahmadi, Mahshid Adv Sci (Weinh) Full Papers Hybrid organic–inorganic perovskites are one of the promising candidates for the next‐generation semiconductors due to their superlative optoelectronic properties. However, one of the limiting factors for potential applications is their chemical and structural instability in different environments. Herein, the stability of (FAPbI(3))(0.85)(MAPbBr(3))(0.15) perovskite solar cell is explored in different atmospheres using impedance spectroscopy. An equivalent circuit model and distribution of relaxation times (DRTs) are used to effectively analyze impedance spectra. DRT is further analyzed via machine learning workflow based on the non‐negative matrix factorization of reconstructed relaxation time spectra. This exploration provides the interplay of charge transport dynamics and recombination processes under environment stimuli and illumination. The results reveal that in the dark, oxygen atmosphere induces an increased hole concentration with less ionic character while ionic motion is dominant under ambient air. Under 1 Sun illumination, the environment‐dependent impedance responses show a more striking effect compared with dark conditions. In this case, the increased transport resistance observed under oxygen atmosphere in equivalent circuit analysis arises due to interruption of photogenerated hole carriers. The results not only shed light on elucidating transport mechanisms of perovskite solar cells in different environments but also offer an effective interpretation of impedance responses. John Wiley and Sons Inc. 2021-06-21 /pmc/articles/PMC8336513/ /pubmed/34155825 http://dx.doi.org/10.1002/advs.202002510 Text en © 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Full Papers
Kim, Dohyung
Muckley, Eric S.
Creange, Nicole
Wan, Ting Hei
Ann, Myung Hyun
Quattrocchi, Emanuele
Vasudevan, Rama K.
Kim, Jong H.
Ciucci, Francesco
Ivanov, Ilia N.
Kalinin, Sergei V.
Ahmadi, Mahshid
Exploring Transport Behavior in Hybrid Perovskites Solar Cells via Machine Learning Analysis of Environmental‐Dependent Impedance Spectroscopy
title Exploring Transport Behavior in Hybrid Perovskites Solar Cells via Machine Learning Analysis of Environmental‐Dependent Impedance Spectroscopy
title_full Exploring Transport Behavior in Hybrid Perovskites Solar Cells via Machine Learning Analysis of Environmental‐Dependent Impedance Spectroscopy
title_fullStr Exploring Transport Behavior in Hybrid Perovskites Solar Cells via Machine Learning Analysis of Environmental‐Dependent Impedance Spectroscopy
title_full_unstemmed Exploring Transport Behavior in Hybrid Perovskites Solar Cells via Machine Learning Analysis of Environmental‐Dependent Impedance Spectroscopy
title_short Exploring Transport Behavior in Hybrid Perovskites Solar Cells via Machine Learning Analysis of Environmental‐Dependent Impedance Spectroscopy
title_sort exploring transport behavior in hybrid perovskites solar cells via machine learning analysis of environmental‐dependent impedance spectroscopy
topic Full Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8336513/
https://www.ncbi.nlm.nih.gov/pubmed/34155825
http://dx.doi.org/10.1002/advs.202002510
work_keys_str_mv AT kimdohyung exploringtransportbehaviorinhybridperovskitessolarcellsviamachinelearninganalysisofenvironmentaldependentimpedancespectroscopy
AT muckleyerics exploringtransportbehaviorinhybridperovskitessolarcellsviamachinelearninganalysisofenvironmentaldependentimpedancespectroscopy
AT creangenicole exploringtransportbehaviorinhybridperovskitessolarcellsviamachinelearninganalysisofenvironmentaldependentimpedancespectroscopy
AT wantinghei exploringtransportbehaviorinhybridperovskitessolarcellsviamachinelearninganalysisofenvironmentaldependentimpedancespectroscopy
AT annmyunghyun exploringtransportbehaviorinhybridperovskitessolarcellsviamachinelearninganalysisofenvironmentaldependentimpedancespectroscopy
AT quattrocchiemanuele exploringtransportbehaviorinhybridperovskitessolarcellsviamachinelearninganalysisofenvironmentaldependentimpedancespectroscopy
AT vasudevanramak exploringtransportbehaviorinhybridperovskitessolarcellsviamachinelearninganalysisofenvironmentaldependentimpedancespectroscopy
AT kimjongh exploringtransportbehaviorinhybridperovskitessolarcellsviamachinelearninganalysisofenvironmentaldependentimpedancespectroscopy
AT ciuccifrancesco exploringtransportbehaviorinhybridperovskitessolarcellsviamachinelearninganalysisofenvironmentaldependentimpedancespectroscopy
AT ivanovilian exploringtransportbehaviorinhybridperovskitessolarcellsviamachinelearninganalysisofenvironmentaldependentimpedancespectroscopy
AT kalininsergeiv exploringtransportbehaviorinhybridperovskitessolarcellsviamachinelearninganalysisofenvironmentaldependentimpedancespectroscopy
AT ahmadimahshid exploringtransportbehaviorinhybridperovskitessolarcellsviamachinelearninganalysisofenvironmentaldependentimpedancespectroscopy