Cargando…
Modeling drug combination effects via latent tensor reconstruction
MOTIVATION: Combination therapies have emerged as a powerful treatment modality to overcome drug resistance and improve treatment efficacy. However, the number of possible drug combinations increases very rapidly with the number of individual drugs in consideration, which makes the comprehensive exp...
Autores principales: | Wang, Tianduanyi, Szedmak, Sandor, Wang, Haishan, Aittokallio, Tero, Pahikkala, Tapio, Cichonska, Anna, Rousu, Juho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8336593/ https://www.ncbi.nlm.nih.gov/pubmed/34252952 http://dx.doi.org/10.1093/bioinformatics/btab308 |
Ejemplares similares
-
Leveraging multi-way interactions for systematic prediction of pre-clinical drug combination effects
por: Julkunen, Heli, et al.
Publicado: (2020) -
Learning with multiple pairwise kernels for drug bioactivity prediction
por: Cichonska, Anna, et al.
Publicado: (2018) -
Systematic mapping of cancer cell target dependencies using high-throughput drug screening in triple-negative breast cancer
por: Wang, Tianduanyi, et al.
Publicado: (2020) -
Computational-experimental approach to drug-target interaction mapping: A case study on kinase inhibitors
por: Cichonska, Anna, et al.
Publicado: (2017) -
Systematic review of computational methods for drug combination prediction
por: Kong, Weikaixin, et al.
Publicado: (2022)