Cargando…
Optimizing blood–brain barrier permeation through deep reinforcement learning for de novo drug design
MOTIVATION: The process of placing new drugs into the market is time-consuming, expensive and complex. The application of computational methods for designing molecules with bespoke properties can contribute to saving resources throughout this process. However, the fundamental properties to be optimi...
Autores principales: | Pereira, Tiago, Abbasi, Maryam, Oliveira, José Luis, Ribeiro, Bernardete, Arrais, Joel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8336597/ https://www.ncbi.nlm.nih.gov/pubmed/34252946 http://dx.doi.org/10.1093/bioinformatics/btab301 |
Ejemplares similares
-
Diversity oriented Deep Reinforcement Learning for targeted molecule generation
por: Pereira, Tiago, et al.
Publicado: (2021) -
PPAD: a deep learning architecture to predict progression of Alzheimer’s disease
por: Al Olaimat, Mohammad, et al.
Publicado: (2023) -
2465: The design of a patient-centered personal health record with patients as co-designers
por: Chung, Arlene, et al.
Publicado: (2018) -
‘Single-subject studies’-derived analyses unveil altered biomechanisms between very small cohorts: implications for rare diseases
por: Aberasturi, Dillon, et al.
Publicado: (2021) -
Modeling drug combination effects via latent tensor reconstruction
por: Wang, Tianduanyi, et al.
Publicado: (2021)