Cargando…
Developing a Natural Language Processing tool to identify perinatal self-harm in electronic healthcare records
BACKGROUND: Self-harm occurring within pregnancy and the postnatal year (“perinatal self-harm”) is a clinically important yet under-researched topic. Current research likely under-estimates prevalence due to methodological limitations. Electronic healthcare records (EHRs) provide a source of clinica...
Autores principales: | Ayre, Karyn, Bittar, André, Kam, Joyce, Verma, Somain, Howard, Louise M., Dutta, Rina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8336818/ https://www.ncbi.nlm.nih.gov/pubmed/34347787 http://dx.doi.org/10.1371/journal.pone.0253809 |
Ejemplares similares
-
Identifying perinatal self-harm in electronic healthcare records using natural language processing
por: Ayre, Karyn, et al.
Publicado: (2021) -
Self-harm in pregnancy and the postnatal year: prevalence and risk factors
por: Ayre, Karyn, et al.
Publicado: (2023) -
Generation and evaluation of artificial mental health records for Natural Language Processing
por: Ive, Julia, et al.
Publicado: (2020) -
Suicide and self-harm in women with mental disorders during pregnancy and the year after birth
por: Ayre, K., et al.
Publicado: (2021) -
Harm minimisation for the management of self-harm: a mixed-methods analysis of electronic health records in secondary mental healthcare
por: Cliffe, Charlotte, et al.
Publicado: (2021)