Cargando…
Predictive and interpretable models via the stacked elastic net
MOTIVATION: Machine learning in the biomedical sciences should ideally provide predictive and interpretable models. When predicting outcomes from clinical or molecular features, applied researchers often want to know which features have effects, whether these effects are positive or negative and how...
Autores principales: | Rauschenberger, Armin, Glaab, Enrico, van de Wiel, Mark A |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8336997/ https://www.ncbi.nlm.nih.gov/pubmed/32437519 http://dx.doi.org/10.1093/bioinformatics/btaa535 |
Ejemplares similares
-
Predicting correlated outcomes from molecular data
por: Rauschenberger, Armin, et al.
Publicado: (2021) -
Adaptive group-regularized logistic elastic net regression
por: Münch, Magnus M, et al.
Publicado: (2019) -
Fast Marginal Likelihood Estimation of Penalties for Group-Adaptive Elastic Net
por: van Nee, Mirrelijn M., et al.
Publicado: (2022) -
Biomarker discovery studies for patient stratification using machine learning analysis of omics data: a scoping review
por: Glaab, Enrico, et al.
Publicado: (2021) -
EnrichNet: network-based gene set enrichment analysis
por: Glaab, Enrico, et al.
Publicado: (2012)