Cargando…
Simultaneous Recognition of Atrophic Gastritis and Intestinal Metaplasia on White Light Endoscopic Images Based on Convolutional Neural Networks: A Multicenter Study
Patients with atrophic gastritis (AG) or gastric intestinal metaplasia (GIM) have elevated risk of gastric adenocarcinoma. Endoscopic screening and surveillance have been implemented in high incidence countries. The study aimed to evaluate the accuracy of a deep convolutional neural network (CNN) fo...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8337066/ https://www.ncbi.nlm.nih.gov/pubmed/34342293 http://dx.doi.org/10.14309/ctg.0000000000000385 |
_version_ | 1783733434466697216 |
---|---|
author | Lin, Ne Yu, Tao Zheng, Wenfang Hu, Huiyi Xiang, Lijuan Ye, Guoliang Zhong, Xingwei Ye, Bin Wang, Rong Deng, Wanyin Li, JingJing Wang, Xiaoyue Han, Feng Zhuang, Kun Zhang, Dekui Xu, Huanhai Ding, Jin Zhang, Xu Shen, Yuqin Lin, Hai Zhang, Zhe Kim, John J. Liu, Jiquan Hu, Weiling Duan, Huilong Si, Jianmin |
author_facet | Lin, Ne Yu, Tao Zheng, Wenfang Hu, Huiyi Xiang, Lijuan Ye, Guoliang Zhong, Xingwei Ye, Bin Wang, Rong Deng, Wanyin Li, JingJing Wang, Xiaoyue Han, Feng Zhuang, Kun Zhang, Dekui Xu, Huanhai Ding, Jin Zhang, Xu Shen, Yuqin Lin, Hai Zhang, Zhe Kim, John J. Liu, Jiquan Hu, Weiling Duan, Huilong Si, Jianmin |
author_sort | Lin, Ne |
collection | PubMed |
description | Patients with atrophic gastritis (AG) or gastric intestinal metaplasia (GIM) have elevated risk of gastric adenocarcinoma. Endoscopic screening and surveillance have been implemented in high incidence countries. The study aimed to evaluate the accuracy of a deep convolutional neural network (CNN) for simultaneous recognition of AG and GIM. METHODS: Archived endoscopic white light images with corresponding gastric biopsies were collected from 14 hospitals located in different regions of China. Corresponding images by anatomic sites containing AG, GIM, and chronic non-AG were categorized using pathology reports. The participants were randomly assigned (8:1:1) to the training cohort for developing the CNN model (TResNet), the validation cohort for fine-tuning, and the test cohort for evaluating the diagnostic accuracy. The area under the curve (AUC), sensitivity, specificity, and accuracy with 95% confidence interval (CI) were calculated. RESULTS: A total of 7,037 endoscopic images from 2,741 participants were used to develop the CNN for recognition of AG and/or GIM. The AUC for recognizing AG was 0.98 (95% CI 0.97–0.99) with sensitivity, specificity, and accuracy of 96.2% (95% CI 94.2%–97.6%), 96.4% (95% CI 94.8%–97.9%), and 96.4% (95% CI 94.4%–97.8%), respectively. The AUC for recognizing GIM was 0.99 (95% CI 0.98–1.00) with sensitivity, specificity, and accuracy of 97.9% (95% CI 96.2%–98.9%), 97.5% (95% CI 95.8%–98.6%), and 97.6% (95% CI 95.8%–98.6%), respectively. DISCUSSION: CNN using endoscopic white light images achieved high diagnostic accuracy in recognizing AG and GIM. |
format | Online Article Text |
id | pubmed-8337066 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Wolters Kluwer |
record_format | MEDLINE/PubMed |
spelling | pubmed-83370662021-08-05 Simultaneous Recognition of Atrophic Gastritis and Intestinal Metaplasia on White Light Endoscopic Images Based on Convolutional Neural Networks: A Multicenter Study Lin, Ne Yu, Tao Zheng, Wenfang Hu, Huiyi Xiang, Lijuan Ye, Guoliang Zhong, Xingwei Ye, Bin Wang, Rong Deng, Wanyin Li, JingJing Wang, Xiaoyue Han, Feng Zhuang, Kun Zhang, Dekui Xu, Huanhai Ding, Jin Zhang, Xu Shen, Yuqin Lin, Hai Zhang, Zhe Kim, John J. Liu, Jiquan Hu, Weiling Duan, Huilong Si, Jianmin Clin Transl Gastroenterol Article Patients with atrophic gastritis (AG) or gastric intestinal metaplasia (GIM) have elevated risk of gastric adenocarcinoma. Endoscopic screening and surveillance have been implemented in high incidence countries. The study aimed to evaluate the accuracy of a deep convolutional neural network (CNN) for simultaneous recognition of AG and GIM. METHODS: Archived endoscopic white light images with corresponding gastric biopsies were collected from 14 hospitals located in different regions of China. Corresponding images by anatomic sites containing AG, GIM, and chronic non-AG were categorized using pathology reports. The participants were randomly assigned (8:1:1) to the training cohort for developing the CNN model (TResNet), the validation cohort for fine-tuning, and the test cohort for evaluating the diagnostic accuracy. The area under the curve (AUC), sensitivity, specificity, and accuracy with 95% confidence interval (CI) were calculated. RESULTS: A total of 7,037 endoscopic images from 2,741 participants were used to develop the CNN for recognition of AG and/or GIM. The AUC for recognizing AG was 0.98 (95% CI 0.97–0.99) with sensitivity, specificity, and accuracy of 96.2% (95% CI 94.2%–97.6%), 96.4% (95% CI 94.8%–97.9%), and 96.4% (95% CI 94.4%–97.8%), respectively. The AUC for recognizing GIM was 0.99 (95% CI 0.98–1.00) with sensitivity, specificity, and accuracy of 97.9% (95% CI 96.2%–98.9%), 97.5% (95% CI 95.8%–98.6%), and 97.6% (95% CI 95.8%–98.6%), respectively. DISCUSSION: CNN using endoscopic white light images achieved high diagnostic accuracy in recognizing AG and GIM. Wolters Kluwer 2021-08-03 /pmc/articles/PMC8337066/ /pubmed/34342293 http://dx.doi.org/10.14309/ctg.0000000000000385 Text en © 2021 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of The American College of Gastroenterology https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) , where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. |
spellingShingle | Article Lin, Ne Yu, Tao Zheng, Wenfang Hu, Huiyi Xiang, Lijuan Ye, Guoliang Zhong, Xingwei Ye, Bin Wang, Rong Deng, Wanyin Li, JingJing Wang, Xiaoyue Han, Feng Zhuang, Kun Zhang, Dekui Xu, Huanhai Ding, Jin Zhang, Xu Shen, Yuqin Lin, Hai Zhang, Zhe Kim, John J. Liu, Jiquan Hu, Weiling Duan, Huilong Si, Jianmin Simultaneous Recognition of Atrophic Gastritis and Intestinal Metaplasia on White Light Endoscopic Images Based on Convolutional Neural Networks: A Multicenter Study |
title | Simultaneous Recognition of Atrophic Gastritis and Intestinal Metaplasia on White Light Endoscopic Images Based on Convolutional Neural Networks: A Multicenter Study |
title_full | Simultaneous Recognition of Atrophic Gastritis and Intestinal Metaplasia on White Light Endoscopic Images Based on Convolutional Neural Networks: A Multicenter Study |
title_fullStr | Simultaneous Recognition of Atrophic Gastritis and Intestinal Metaplasia on White Light Endoscopic Images Based on Convolutional Neural Networks: A Multicenter Study |
title_full_unstemmed | Simultaneous Recognition of Atrophic Gastritis and Intestinal Metaplasia on White Light Endoscopic Images Based on Convolutional Neural Networks: A Multicenter Study |
title_short | Simultaneous Recognition of Atrophic Gastritis and Intestinal Metaplasia on White Light Endoscopic Images Based on Convolutional Neural Networks: A Multicenter Study |
title_sort | simultaneous recognition of atrophic gastritis and intestinal metaplasia on white light endoscopic images based on convolutional neural networks: a multicenter study |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8337066/ https://www.ncbi.nlm.nih.gov/pubmed/34342293 http://dx.doi.org/10.14309/ctg.0000000000000385 |
work_keys_str_mv | AT linne simultaneousrecognitionofatrophicgastritisandintestinalmetaplasiaonwhitelightendoscopicimagesbasedonconvolutionalneuralnetworksamulticenterstudy AT yutao simultaneousrecognitionofatrophicgastritisandintestinalmetaplasiaonwhitelightendoscopicimagesbasedonconvolutionalneuralnetworksamulticenterstudy AT zhengwenfang simultaneousrecognitionofatrophicgastritisandintestinalmetaplasiaonwhitelightendoscopicimagesbasedonconvolutionalneuralnetworksamulticenterstudy AT huhuiyi simultaneousrecognitionofatrophicgastritisandintestinalmetaplasiaonwhitelightendoscopicimagesbasedonconvolutionalneuralnetworksamulticenterstudy AT xianglijuan simultaneousrecognitionofatrophicgastritisandintestinalmetaplasiaonwhitelightendoscopicimagesbasedonconvolutionalneuralnetworksamulticenterstudy AT yeguoliang simultaneousrecognitionofatrophicgastritisandintestinalmetaplasiaonwhitelightendoscopicimagesbasedonconvolutionalneuralnetworksamulticenterstudy AT zhongxingwei simultaneousrecognitionofatrophicgastritisandintestinalmetaplasiaonwhitelightendoscopicimagesbasedonconvolutionalneuralnetworksamulticenterstudy AT yebin simultaneousrecognitionofatrophicgastritisandintestinalmetaplasiaonwhitelightendoscopicimagesbasedonconvolutionalneuralnetworksamulticenterstudy AT wangrong simultaneousrecognitionofatrophicgastritisandintestinalmetaplasiaonwhitelightendoscopicimagesbasedonconvolutionalneuralnetworksamulticenterstudy AT dengwanyin simultaneousrecognitionofatrophicgastritisandintestinalmetaplasiaonwhitelightendoscopicimagesbasedonconvolutionalneuralnetworksamulticenterstudy AT lijingjing simultaneousrecognitionofatrophicgastritisandintestinalmetaplasiaonwhitelightendoscopicimagesbasedonconvolutionalneuralnetworksamulticenterstudy AT wangxiaoyue simultaneousrecognitionofatrophicgastritisandintestinalmetaplasiaonwhitelightendoscopicimagesbasedonconvolutionalneuralnetworksamulticenterstudy AT hanfeng simultaneousrecognitionofatrophicgastritisandintestinalmetaplasiaonwhitelightendoscopicimagesbasedonconvolutionalneuralnetworksamulticenterstudy AT zhuangkun simultaneousrecognitionofatrophicgastritisandintestinalmetaplasiaonwhitelightendoscopicimagesbasedonconvolutionalneuralnetworksamulticenterstudy AT zhangdekui simultaneousrecognitionofatrophicgastritisandintestinalmetaplasiaonwhitelightendoscopicimagesbasedonconvolutionalneuralnetworksamulticenterstudy AT xuhuanhai simultaneousrecognitionofatrophicgastritisandintestinalmetaplasiaonwhitelightendoscopicimagesbasedonconvolutionalneuralnetworksamulticenterstudy AT dingjin simultaneousrecognitionofatrophicgastritisandintestinalmetaplasiaonwhitelightendoscopicimagesbasedonconvolutionalneuralnetworksamulticenterstudy AT zhangxu simultaneousrecognitionofatrophicgastritisandintestinalmetaplasiaonwhitelightendoscopicimagesbasedonconvolutionalneuralnetworksamulticenterstudy AT shenyuqin simultaneousrecognitionofatrophicgastritisandintestinalmetaplasiaonwhitelightendoscopicimagesbasedonconvolutionalneuralnetworksamulticenterstudy AT linhai simultaneousrecognitionofatrophicgastritisandintestinalmetaplasiaonwhitelightendoscopicimagesbasedonconvolutionalneuralnetworksamulticenterstudy AT zhangzhe simultaneousrecognitionofatrophicgastritisandintestinalmetaplasiaonwhitelightendoscopicimagesbasedonconvolutionalneuralnetworksamulticenterstudy AT kimjohnj simultaneousrecognitionofatrophicgastritisandintestinalmetaplasiaonwhitelightendoscopicimagesbasedonconvolutionalneuralnetworksamulticenterstudy AT liujiquan simultaneousrecognitionofatrophicgastritisandintestinalmetaplasiaonwhitelightendoscopicimagesbasedonconvolutionalneuralnetworksamulticenterstudy AT huweiling simultaneousrecognitionofatrophicgastritisandintestinalmetaplasiaonwhitelightendoscopicimagesbasedonconvolutionalneuralnetworksamulticenterstudy AT duanhuilong simultaneousrecognitionofatrophicgastritisandintestinalmetaplasiaonwhitelightendoscopicimagesbasedonconvolutionalneuralnetworksamulticenterstudy AT sijianmin simultaneousrecognitionofatrophicgastritisandintestinalmetaplasiaonwhitelightendoscopicimagesbasedonconvolutionalneuralnetworksamulticenterstudy |