Cargando…

Simultaneous Recognition of Atrophic Gastritis and Intestinal Metaplasia on White Light Endoscopic Images Based on Convolutional Neural Networks: A Multicenter Study

Patients with atrophic gastritis (AG) or gastric intestinal metaplasia (GIM) have elevated risk of gastric adenocarcinoma. Endoscopic screening and surveillance have been implemented in high incidence countries. The study aimed to evaluate the accuracy of a deep convolutional neural network (CNN) fo...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Ne, Yu, Tao, Zheng, Wenfang, Hu, Huiyi, Xiang, Lijuan, Ye, Guoliang, Zhong, Xingwei, Ye, Bin, Wang, Rong, Deng, Wanyin, Li, JingJing, Wang, Xiaoyue, Han, Feng, Zhuang, Kun, Zhang, Dekui, Xu, Huanhai, Ding, Jin, Zhang, Xu, Shen, Yuqin, Lin, Hai, Zhang, Zhe, Kim, John J., Liu, Jiquan, Hu, Weiling, Duan, Huilong, Si, Jianmin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wolters Kluwer 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8337066/
https://www.ncbi.nlm.nih.gov/pubmed/34342293
http://dx.doi.org/10.14309/ctg.0000000000000385
_version_ 1783733434466697216
author Lin, Ne
Yu, Tao
Zheng, Wenfang
Hu, Huiyi
Xiang, Lijuan
Ye, Guoliang
Zhong, Xingwei
Ye, Bin
Wang, Rong
Deng, Wanyin
Li, JingJing
Wang, Xiaoyue
Han, Feng
Zhuang, Kun
Zhang, Dekui
Xu, Huanhai
Ding, Jin
Zhang, Xu
Shen, Yuqin
Lin, Hai
Zhang, Zhe
Kim, John J.
Liu, Jiquan
Hu, Weiling
Duan, Huilong
Si, Jianmin
author_facet Lin, Ne
Yu, Tao
Zheng, Wenfang
Hu, Huiyi
Xiang, Lijuan
Ye, Guoliang
Zhong, Xingwei
Ye, Bin
Wang, Rong
Deng, Wanyin
Li, JingJing
Wang, Xiaoyue
Han, Feng
Zhuang, Kun
Zhang, Dekui
Xu, Huanhai
Ding, Jin
Zhang, Xu
Shen, Yuqin
Lin, Hai
Zhang, Zhe
Kim, John J.
Liu, Jiquan
Hu, Weiling
Duan, Huilong
Si, Jianmin
author_sort Lin, Ne
collection PubMed
description Patients with atrophic gastritis (AG) or gastric intestinal metaplasia (GIM) have elevated risk of gastric adenocarcinoma. Endoscopic screening and surveillance have been implemented in high incidence countries. The study aimed to evaluate the accuracy of a deep convolutional neural network (CNN) for simultaneous recognition of AG and GIM. METHODS: Archived endoscopic white light images with corresponding gastric biopsies were collected from 14 hospitals located in different regions of China. Corresponding images by anatomic sites containing AG, GIM, and chronic non-AG were categorized using pathology reports. The participants were randomly assigned (8:1:1) to the training cohort for developing the CNN model (TResNet), the validation cohort for fine-tuning, and the test cohort for evaluating the diagnostic accuracy. The area under the curve (AUC), sensitivity, specificity, and accuracy with 95% confidence interval (CI) were calculated. RESULTS: A total of 7,037 endoscopic images from 2,741 participants were used to develop the CNN for recognition of AG and/or GIM. The AUC for recognizing AG was 0.98 (95% CI 0.97–0.99) with sensitivity, specificity, and accuracy of 96.2% (95% CI 94.2%–97.6%), 96.4% (95% CI 94.8%–97.9%), and 96.4% (95% CI 94.4%–97.8%), respectively. The AUC for recognizing GIM was 0.99 (95% CI 0.98–1.00) with sensitivity, specificity, and accuracy of 97.9% (95% CI 96.2%–98.9%), 97.5% (95% CI 95.8%–98.6%), and 97.6% (95% CI 95.8%–98.6%), respectively. DISCUSSION: CNN using endoscopic white light images achieved high diagnostic accuracy in recognizing AG and GIM.
format Online
Article
Text
id pubmed-8337066
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Wolters Kluwer
record_format MEDLINE/PubMed
spelling pubmed-83370662021-08-05 Simultaneous Recognition of Atrophic Gastritis and Intestinal Metaplasia on White Light Endoscopic Images Based on Convolutional Neural Networks: A Multicenter Study Lin, Ne Yu, Tao Zheng, Wenfang Hu, Huiyi Xiang, Lijuan Ye, Guoliang Zhong, Xingwei Ye, Bin Wang, Rong Deng, Wanyin Li, JingJing Wang, Xiaoyue Han, Feng Zhuang, Kun Zhang, Dekui Xu, Huanhai Ding, Jin Zhang, Xu Shen, Yuqin Lin, Hai Zhang, Zhe Kim, John J. Liu, Jiquan Hu, Weiling Duan, Huilong Si, Jianmin Clin Transl Gastroenterol Article Patients with atrophic gastritis (AG) or gastric intestinal metaplasia (GIM) have elevated risk of gastric adenocarcinoma. Endoscopic screening and surveillance have been implemented in high incidence countries. The study aimed to evaluate the accuracy of a deep convolutional neural network (CNN) for simultaneous recognition of AG and GIM. METHODS: Archived endoscopic white light images with corresponding gastric biopsies were collected from 14 hospitals located in different regions of China. Corresponding images by anatomic sites containing AG, GIM, and chronic non-AG were categorized using pathology reports. The participants were randomly assigned (8:1:1) to the training cohort for developing the CNN model (TResNet), the validation cohort for fine-tuning, and the test cohort for evaluating the diagnostic accuracy. The area under the curve (AUC), sensitivity, specificity, and accuracy with 95% confidence interval (CI) were calculated. RESULTS: A total of 7,037 endoscopic images from 2,741 participants were used to develop the CNN for recognition of AG and/or GIM. The AUC for recognizing AG was 0.98 (95% CI 0.97–0.99) with sensitivity, specificity, and accuracy of 96.2% (95% CI 94.2%–97.6%), 96.4% (95% CI 94.8%–97.9%), and 96.4% (95% CI 94.4%–97.8%), respectively. The AUC for recognizing GIM was 0.99 (95% CI 0.98–1.00) with sensitivity, specificity, and accuracy of 97.9% (95% CI 96.2%–98.9%), 97.5% (95% CI 95.8%–98.6%), and 97.6% (95% CI 95.8%–98.6%), respectively. DISCUSSION: CNN using endoscopic white light images achieved high diagnostic accuracy in recognizing AG and GIM. Wolters Kluwer 2021-08-03 /pmc/articles/PMC8337066/ /pubmed/34342293 http://dx.doi.org/10.14309/ctg.0000000000000385 Text en © 2021 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of The American College of Gastroenterology https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) , where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.
spellingShingle Article
Lin, Ne
Yu, Tao
Zheng, Wenfang
Hu, Huiyi
Xiang, Lijuan
Ye, Guoliang
Zhong, Xingwei
Ye, Bin
Wang, Rong
Deng, Wanyin
Li, JingJing
Wang, Xiaoyue
Han, Feng
Zhuang, Kun
Zhang, Dekui
Xu, Huanhai
Ding, Jin
Zhang, Xu
Shen, Yuqin
Lin, Hai
Zhang, Zhe
Kim, John J.
Liu, Jiquan
Hu, Weiling
Duan, Huilong
Si, Jianmin
Simultaneous Recognition of Atrophic Gastritis and Intestinal Metaplasia on White Light Endoscopic Images Based on Convolutional Neural Networks: A Multicenter Study
title Simultaneous Recognition of Atrophic Gastritis and Intestinal Metaplasia on White Light Endoscopic Images Based on Convolutional Neural Networks: A Multicenter Study
title_full Simultaneous Recognition of Atrophic Gastritis and Intestinal Metaplasia on White Light Endoscopic Images Based on Convolutional Neural Networks: A Multicenter Study
title_fullStr Simultaneous Recognition of Atrophic Gastritis and Intestinal Metaplasia on White Light Endoscopic Images Based on Convolutional Neural Networks: A Multicenter Study
title_full_unstemmed Simultaneous Recognition of Atrophic Gastritis and Intestinal Metaplasia on White Light Endoscopic Images Based on Convolutional Neural Networks: A Multicenter Study
title_short Simultaneous Recognition of Atrophic Gastritis and Intestinal Metaplasia on White Light Endoscopic Images Based on Convolutional Neural Networks: A Multicenter Study
title_sort simultaneous recognition of atrophic gastritis and intestinal metaplasia on white light endoscopic images based on convolutional neural networks: a multicenter study
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8337066/
https://www.ncbi.nlm.nih.gov/pubmed/34342293
http://dx.doi.org/10.14309/ctg.0000000000000385
work_keys_str_mv AT linne simultaneousrecognitionofatrophicgastritisandintestinalmetaplasiaonwhitelightendoscopicimagesbasedonconvolutionalneuralnetworksamulticenterstudy
AT yutao simultaneousrecognitionofatrophicgastritisandintestinalmetaplasiaonwhitelightendoscopicimagesbasedonconvolutionalneuralnetworksamulticenterstudy
AT zhengwenfang simultaneousrecognitionofatrophicgastritisandintestinalmetaplasiaonwhitelightendoscopicimagesbasedonconvolutionalneuralnetworksamulticenterstudy
AT huhuiyi simultaneousrecognitionofatrophicgastritisandintestinalmetaplasiaonwhitelightendoscopicimagesbasedonconvolutionalneuralnetworksamulticenterstudy
AT xianglijuan simultaneousrecognitionofatrophicgastritisandintestinalmetaplasiaonwhitelightendoscopicimagesbasedonconvolutionalneuralnetworksamulticenterstudy
AT yeguoliang simultaneousrecognitionofatrophicgastritisandintestinalmetaplasiaonwhitelightendoscopicimagesbasedonconvolutionalneuralnetworksamulticenterstudy
AT zhongxingwei simultaneousrecognitionofatrophicgastritisandintestinalmetaplasiaonwhitelightendoscopicimagesbasedonconvolutionalneuralnetworksamulticenterstudy
AT yebin simultaneousrecognitionofatrophicgastritisandintestinalmetaplasiaonwhitelightendoscopicimagesbasedonconvolutionalneuralnetworksamulticenterstudy
AT wangrong simultaneousrecognitionofatrophicgastritisandintestinalmetaplasiaonwhitelightendoscopicimagesbasedonconvolutionalneuralnetworksamulticenterstudy
AT dengwanyin simultaneousrecognitionofatrophicgastritisandintestinalmetaplasiaonwhitelightendoscopicimagesbasedonconvolutionalneuralnetworksamulticenterstudy
AT lijingjing simultaneousrecognitionofatrophicgastritisandintestinalmetaplasiaonwhitelightendoscopicimagesbasedonconvolutionalneuralnetworksamulticenterstudy
AT wangxiaoyue simultaneousrecognitionofatrophicgastritisandintestinalmetaplasiaonwhitelightendoscopicimagesbasedonconvolutionalneuralnetworksamulticenterstudy
AT hanfeng simultaneousrecognitionofatrophicgastritisandintestinalmetaplasiaonwhitelightendoscopicimagesbasedonconvolutionalneuralnetworksamulticenterstudy
AT zhuangkun simultaneousrecognitionofatrophicgastritisandintestinalmetaplasiaonwhitelightendoscopicimagesbasedonconvolutionalneuralnetworksamulticenterstudy
AT zhangdekui simultaneousrecognitionofatrophicgastritisandintestinalmetaplasiaonwhitelightendoscopicimagesbasedonconvolutionalneuralnetworksamulticenterstudy
AT xuhuanhai simultaneousrecognitionofatrophicgastritisandintestinalmetaplasiaonwhitelightendoscopicimagesbasedonconvolutionalneuralnetworksamulticenterstudy
AT dingjin simultaneousrecognitionofatrophicgastritisandintestinalmetaplasiaonwhitelightendoscopicimagesbasedonconvolutionalneuralnetworksamulticenterstudy
AT zhangxu simultaneousrecognitionofatrophicgastritisandintestinalmetaplasiaonwhitelightendoscopicimagesbasedonconvolutionalneuralnetworksamulticenterstudy
AT shenyuqin simultaneousrecognitionofatrophicgastritisandintestinalmetaplasiaonwhitelightendoscopicimagesbasedonconvolutionalneuralnetworksamulticenterstudy
AT linhai simultaneousrecognitionofatrophicgastritisandintestinalmetaplasiaonwhitelightendoscopicimagesbasedonconvolutionalneuralnetworksamulticenterstudy
AT zhangzhe simultaneousrecognitionofatrophicgastritisandintestinalmetaplasiaonwhitelightendoscopicimagesbasedonconvolutionalneuralnetworksamulticenterstudy
AT kimjohnj simultaneousrecognitionofatrophicgastritisandintestinalmetaplasiaonwhitelightendoscopicimagesbasedonconvolutionalneuralnetworksamulticenterstudy
AT liujiquan simultaneousrecognitionofatrophicgastritisandintestinalmetaplasiaonwhitelightendoscopicimagesbasedonconvolutionalneuralnetworksamulticenterstudy
AT huweiling simultaneousrecognitionofatrophicgastritisandintestinalmetaplasiaonwhitelightendoscopicimagesbasedonconvolutionalneuralnetworksamulticenterstudy
AT duanhuilong simultaneousrecognitionofatrophicgastritisandintestinalmetaplasiaonwhitelightendoscopicimagesbasedonconvolutionalneuralnetworksamulticenterstudy
AT sijianmin simultaneousrecognitionofatrophicgastritisandintestinalmetaplasiaonwhitelightendoscopicimagesbasedonconvolutionalneuralnetworksamulticenterstudy