Cargando…

Integrated slice-specific dynamic shimming for whole-body diffusion-weighted MR imaging at 1.5 T

OBJECTIVE: To compare integrated slice-specific dynamic shim (iShim) with distortion correction post-processing to conventional 3D volume shim for the reduction of artefacts and signal loss in 1.5 T whole-body diffusion-weighted imaging (WB-DWI). METHODS: Ten volunteers underwent WB-DWI using conven...

Descripción completa

Detalles Bibliográficos
Autores principales: McElroy, Sarah, Winfield, Jessica M., Westerland, Olwen, Charles-Edwards, Geoff, Bell, Joanna, Neji, Radhouene, Stemmer, Alto, Kiefer, Berthold, Streetly, Matthew, Goh, Vicky
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8338872/
https://www.ncbi.nlm.nih.gov/pubmed/33355719
http://dx.doi.org/10.1007/s10334-020-00898-6
Descripción
Sumario:OBJECTIVE: To compare integrated slice-specific dynamic shim (iShim) with distortion correction post-processing to conventional 3D volume shim for the reduction of artefacts and signal loss in 1.5 T whole-body diffusion-weighted imaging (WB-DWI). METHODS: Ten volunteers underwent WB-DWI using conventional 3D volume shim and iShim. Forty-eight consecutive patients underwent WB-DWI with either volume shim (n = 24) or iShim (n = 24) only. For all subjects, displacement of the spinal cord at imaging station interfaces was measured on composed b = 900 s/mm(2) images. The signal intensity ratios, computed as the average signal intensity in a region of high susceptibility gradient (sternum) divided by the average signal intensity in a region of low susceptibility gradient (vertebral body), were compared in volunteers. For patients, image quality was graded from 1 to 5 (1 = Poor, 5 = Excellent). Signal intensity discontinuity scores were recorded from 1 to 4 (1 = 2 + steps, 4 = 0 steps). A p value of < 0.05 was considered significant. RESULTS: Spinal cord displacement artefacts were lower with iShim (p < 0.05) at the thoracic junction in volunteers and at the cervical and thoracic junctions in patients (p < 0.05). The sternum/vertebra signal intensity ratio in healthy volunteers was higher with iShim compared with the volume shim sequence (p < 0.05). There were no significant differences between the volume shim and iShim patient groups in terms of image quality and signal intensity discontinuity scores. CONCLUSION: iShim reduced the degree of spinal cord displacement artefact between imaging stations and susceptibility-gradient-induced signal loss. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10334-020-00898-6.