Cargando…

The use of negative oxygen ion clusters [O(2)(−)(H(2)O)(n)] and bicarbonate ions [HCO(3)(−)] as the supportive treatment of COVID-19 infections: A possibility

The COVID-19 or novel coronavirus SARS-CoV-2 pandemic is challenging worldwide healthcare system and severely affecting global economy. Furious efforts to end the pandemic including prevention of spread of SARS-CoV-2, use of antiviral drugs, symptomatic treatments and vaccination are underway. But t...

Descripción completa

Detalles Bibliográficos
Autores principales: Badhe, Ravindra V., Nipate, Sonali S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Ltd. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8339564/
https://www.ncbi.nlm.nih.gov/pubmed/34390895
http://dx.doi.org/10.1016/j.mehy.2021.110658
Descripción
Sumario:The COVID-19 or novel coronavirus SARS-CoV-2 pandemic is challenging worldwide healthcare system and severely affecting global economy. Furious efforts to end the pandemic including prevention of spread of SARS-CoV-2, use of antiviral drugs, symptomatic treatments and vaccination are underway. But there are no effective treatments available to save the dying patient in stage 2 (pulmonary) and stage 3 (hyperinflammation) of the infection. The detailed genetic and phenotypical analysis of SARS-CoV-2 revealed that the spike protein (S1) has increased positive charges (compared to SARS-CoV) on them and are responsible for attachment to human angiotensin-converting enzyme 2 (ACE2) receptor and infection by the virus. In addition, it was also reported that the inflammation in the tissue rendered the lung environment more acidic supporting the fusion of SARS-CoV-2 with the cells. We hypothesize that the intermittent use of the oxygen ionizer generating negative oxygen ion clusters [O(2)(−)(H(2)O)(n)] and sodium bicarbonate nebulizer (generating HCO(3)(−)); when connected to ventilator inlet or oxygen concentrator will neutralize the spike protein of the virus in respiratory tract and lungs and change the lung environment to neutral/alkaline condition respectively facilitating improved oxygen pressure in blood. These physical changes can effectively reduce the viral burden and help the patient recover from the infection faster.