Cargando…
Clinicopathological models for predicting lymph node metastasis in patients with early-stage lung adenocarcinoma: the application of machine learning algorithms
BACKGROUND: Lymph node metastasis (LNM) status can be a critical decisive factor for clinical management of lung cancer. Accurately evaluating the risk of LNM during or after the surgery can be helpful for making clinical decisions. This study aims to incorporate clinicopathological characteristics...
Autores principales: | Chong, Yuming, Wu, Yijun, Liu, Jianghao, Han, Chang, Gong, Liang, Liu, Xinyu, Liang, Naixin, Li, Shanqing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8339794/ https://www.ncbi.nlm.nih.gov/pubmed/34422333 http://dx.doi.org/10.21037/jtd-21-98 |
Ejemplares similares
-
Preoperative Prediction of Lymph Node Metastasis in Patients With Early-T-Stage Non-small Cell Lung Cancer by Machine Learning Algorithms
por: Wu, Yijun, et al.
Publicado: (2020) -
An Externally-Validated Dynamic Nomogram Based on Clinicopathological Characteristics for Evaluating the Risk of Lymph Node Metastasis in Small-Size Non-small Cell Lung Cancer
por: Wu, Yijun, et al.
Publicado: (2020) -
Machine Learning Algorithms for the Prediction of Central Lymph Node Metastasis in Patients With Papillary Thyroid Cancer
por: Wu, Yijun, et al.
Publicado: (2020) -
Metastatic Patterns of Mediastinal Lymph Nodes in Small-Size Non-small Cell Lung Cancer (T1b)
por: Wu, Yijun, et al.
Publicado: (2020) -
Erratum to clinicopathological models for predicting lymph node metastasis in patients with early-stage lung adenocarcinoma: the application of machine learning algorithms
Publicado: (2021)