Cargando…

Synthetic Integrin-Targeting Dextran-Fc Hybrids Efficiently Inhibit Tumor Proliferation In Vitro

Herein, we present the design, synthesis, and biological evaluation of novel integrin-targeting molecular hybrids combining RGD peptides and a potent cytotoxin presented on dextran polysaccharides. Based on an aglycosylated Fc as a centerpiece, endosomal-cleavable cytotoxic agent monomethyl auristat...

Descripción completa

Detalles Bibliográficos
Autores principales: Schneider, Hendrik, Englert, Simon, Macarrón Palacios, Arturo, Lerma Romero, Jorge Alberto, Ali, Ataurehman, Avrutina, Olga, Kolmar, Harald
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8339797/
https://www.ncbi.nlm.nih.gov/pubmed/34368077
http://dx.doi.org/10.3389/fchem.2021.693097
Descripción
Sumario:Herein, we present the design, synthesis, and biological evaluation of novel integrin-targeting molecular hybrids combining RGD peptides and a potent cytotoxin presented on dextran polysaccharides. Based on an aglycosylated Fc as a centerpiece, endosomal-cleavable cytotoxic agent monomethyl auristatin E (MMAE) and dextran as multimerization site were covalently connected by two bioorthogonal enzyme-mediated reactions site-specifically. Decoration of dextran with cyclic RGD peptides, introduced by copper “click” reaction, resulted in the final constructs with the potential to kill integrin-overexpressing tumor cells. We found that these modifications had little impact on the stability of the Fc scaffold and the RGD-bearing construct showed good binding properties of αvβ3-expressing U87MG cells. Furthermore, the construct showed a remarkable antiproliferative activity. These results demonstrate the general capability of our design to provoke receptor-mediated endocytosis upon binding to the cellular surface, followed by endosomal cleavage of the linkage between Fc-dextran and MMAE and its subsequent release. Our approach opens new avenues to transcribe small molecule binders into tailor-made multimeric molecular hybrids with antitumor potential.