Cargando…

Virtual reality and 3D printing improve preoperative visualization of 3D liver reconstructions—results from a preclinical comparison of presentation modalities and user’s preference

BACKGROUND: Preoperative three-dimensional (3D) reconstructions for liver surgery planning have been shown to be effective in reduction of blood loss and operation time. However, the role of the ‘presentation modality’ is not well investigated. We present the first study to compare 3D PDFs, 3D print...

Descripción completa

Detalles Bibliográficos
Autores principales: Huettl, Florentine, Saalfeld, Patrick, Hansen, Christian, Preim, Bernhard, Poplawski, Alicia, Kneist, Werner, Lang, Hauke, Huber, Tobias
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AME Publishing Company 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8339861/
https://www.ncbi.nlm.nih.gov/pubmed/34422986
http://dx.doi.org/10.21037/atm-21-512
Descripción
Sumario:BACKGROUND: Preoperative three-dimensional (3D) reconstructions for liver surgery planning have been shown to be effective in reduction of blood loss and operation time. However, the role of the ‘presentation modality’ is not well investigated. We present the first study to compare 3D PDFs, 3D printed models (PR) and virtual reality (VR) 3D models with regard to anatomical orientation and personal preferences in a high volume liver surgery center. METHODS: Thirty participants, 10 medical students, 10 residents, 5 fellows and 5 hepatopancreatobiliary (HPB) experts, assigned the tumor-bearing segments of 20 different patient’s individual liver reconstructions. Liver models were presented in a random order in all modalities. Time needed to specify the tumor location was recorded. In addition, a score was calculated factoring in correct, wrong and missing segment assignments. Furthermore, standardized test/questionnaires for spatial thinking and seeing, vegetative side effects and usability were completed. RESULTS: Participants named significantly more correct segments in VR (P=0.040) or PR (P=0.036) compared to PDF. Tumor assignment was significantly shorter with 3D PR models compared to 3D PDF (P<0.001) or VR application (P<0.001). Regardless of the modality, HPB experts were significantly faster (24±8 vs. 35±11 sec; P=0.014) and more often correct (0.87±0.12 vs. 0.83±0.15; P<0.001) than medical students. Test results for spatial thinking and seeing had no influence on time but on correctness of tumor assignment. Regarding usability and user experience the VR application achieved the highest scores without causing significant vegetative symptoms and was also the most preferred method (n=22, 73.3%) because of the multiple functions like scaling and change of transparency. Ninety percent (n=27) stated that this application can positively influence the operation planning. CONCLUSIONS: 3D PR models and 3D VR models enable a better and partially faster anatomical orientation than reconstructions presented as 3D PDFs. User’s preferred the VR application over the PR models and PDF. A prospective trial is needed to evaluate the different presentation modalities regarding intra- and postoperative outcomes.