Cargando…
Semi-supervised generative adversarial networks for closed-angle detection on anterior segment optical coherence tomography images: an empirical study with a small training dataset
BACKGROUND: Semi-supervised learning algorithms can leverage an unlabeled dataset when labeling is limited or expensive to obtain. In the current study, we developed and evaluated a semi-supervised generative adversarial networks (GANs) model that detects closed-angle on anterior segment optical coh...
Autores principales: | Zheng, Ce, Koh, Victor, Bian, Fang, Li, Luo, Xie, Xiaolin, Wang, Zilei, Yang, Jianlong, Chew, Paul Tec Kuan, Zhang, Mingzhi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8339863/ https://www.ncbi.nlm.nih.gov/pubmed/34422985 http://dx.doi.org/10.21037/atm-20-7436 |
Ejemplares similares
-
Assessment of Generative Adversarial Networks for Synthetic Anterior Segment Optical Coherence Tomography Images in Closed-Angle Detection
por: Zheng, Ce, et al.
Publicado: (2021) -
Generative Adversarial Training for Supervised and Semi-supervised Learning
por: Wang, Xianmin, et al.
Publicado: (2022) -
Semi-supervised adversarial discriminative domain adaptation
por: Nguyen, Thai-Vu, et al.
Publicado: (2022) -
Medical Image Classification Based on Semi-Supervised Generative Adversarial Network and Pseudo-Labelling
por: Liu, Kun, et al.
Publicado: (2022) -
Generative Adversarial Networks-Based Semi-Supervised Automatic Modulation Recognition for Cognitive Radio Networks
por: Li, Mingxuan, et al.
Publicado: (2018)