Cargando…
Gated Recurrent Units Viewed Through the Lens of Continuous Time Dynamical Systems
Gated recurrent units (GRUs) are specialized memory elements for building recurrent neural networks. Despite their incredible success on various tasks, including extracting dynamics underlying neural data, little is understood about the specific dynamics representable in a GRU network. As a result,...
Autores principales: | Jordan, Ian D., Sokół, Piotr Aleksander, Park, Il Memming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8339926/ https://www.ncbi.nlm.nih.gov/pubmed/34366817 http://dx.doi.org/10.3389/fncom.2021.678158 |
Ejemplares similares
-
Variational Online Learning of Neural Dynamics
por: Zhao, Yuan, et al.
Publicado: (2020) -
REAL-TIME VARIATIONAL METHOD FOR LEARNING NEURAL TRAJECTORY AND ITS DYNAMICS
por: Dowling, Matthew, et al.
Publicado: (2023) -
Endocannabinoid dynamics gate spike-timing dependent depression and
potentiation
por: Cui, Yihui, et al.
Publicado: (2016) -
Birhythmic Analog Circuit Maze: A Nonlinear Neurostimulation Testbed
por: Jordan, Ian D., et al.
Publicado: (2020) -
Viewing Meaningful Work Through the Lens of Time
por: Tommasi, Francesco, et al.
Publicado: (2020)