Cargando…
A Comparison of Nine Machine Learning Mutagenicity Models and Their Application for Predicting Pyrrolizidine Alkaloids
Random forest, support vector machine, logistic regression, neural networks and k-nearest neighbor (lazar) algorithms, were applied to a new Salmonella mutagenicity dataset with 8,290 unique chemical structures utilizing MolPrint2D and Chemistry Development Kit (CDK) descriptors. Crossvalidation acc...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8339974/ https://www.ncbi.nlm.nih.gov/pubmed/34366864 http://dx.doi.org/10.3389/fphar.2021.708050 |
Sumario: | Random forest, support vector machine, logistic regression, neural networks and k-nearest neighbor (lazar) algorithms, were applied to a new Salmonella mutagenicity dataset with 8,290 unique chemical structures utilizing MolPrint2D and Chemistry Development Kit (CDK) descriptors. Crossvalidation accuracies of all investigated models ranged from 80 to 85% which is comparable with the interlaboratory variability of the Salmonella mutagenicity assay. Pyrrolizidine alkaloid predictions showed a clear distinction between chemical groups, where otonecines had the highest proportion of positive mutagenicity predictions and monoesters the lowest. |
---|