Cargando…
Automatic Extraction of Lung Cancer Staging Information From Computed Tomography Reports: Deep Learning Approach
BACKGROUND: Lung cancer is the leading cause of cancer deaths worldwide. Clinical staging of lung cancer plays a crucial role in making treatment decisions and evaluating prognosis. However, in clinical practice, approximately one-half of the clinical stages of lung cancer patients are inconsistent...
Autores principales: | Hu, Danqing, Zhang, Huanyao, Li, Shaolei, Wang, Yuhong, Wu, Nan, Lu, Xudong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8339987/ https://www.ncbi.nlm.nih.gov/pubmed/34287213 http://dx.doi.org/10.2196/27955 |
Ejemplares similares
-
A novel deep learning approach to extract Chinese clinical entities for lung cancer screening and staging
por: Zhang, Huanyao, et al.
Publicado: (2021) -
Using Natural Language Processing and Machine Learning to Preoperatively Predict Lymph Node Metastasis for Non–Small Cell Lung Cancer With Electronic Medical Records: Development and Validation Study
por: Hu, Danqing, et al.
Publicado: (2022) -
An ensemble learning with active sampling to predict the prognosis of postoperative non-small cell lung cancer patients
por: Hu, Danqing, et al.
Publicado: (2022) -
Deep-Learning-Based Automatic Segmentation of Parotid Gland on Computed Tomography Images
por: Önder, Merve, et al.
Publicado: (2023) -
Automatic segmentation of pulmonary lobes on low-dose computed tomography using deep learning
por: Zhang, Zewei, et al.
Publicado: (2021)