Cargando…
Predicting hospital admissions from individual patient data (IPD): an applied example to explore key elements driving external validity
OBJECTIVE: To explore factors that potentially impact external validation performance while developing and validating a prognostic model for hospital admissions (HAs) in complex older general practice patients. STUDY DESIGN AND SETTING: Using individual participant data from four cluster-randomised...
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8340284/ https://www.ncbi.nlm.nih.gov/pubmed/34348947 http://dx.doi.org/10.1136/bmjopen-2020-045572 |
_version_ | 1783733746466291712 |
---|---|
author | Meid, Andreas Daniel Gonzalez-Gonzalez, Ana Isabel Dinh, Truc Sophia Blom, Jeanet van den Akker, Marjan Elders, Petra Thiem, Ulrich Küllenberg de Gaudry, Daniela Swart, Karin M A Rudolf, Henrik Bosch-Lenders, Donna Trampisch, Hans J Meerpohl, Joerg J Gerlach, Ferdinand M Flaig, Benno Kom, Ghainsom Snell, Kym I E Perera, Rafael Haefeli, Walter Emil Glasziou, Paul Muth, Christiane |
author_facet | Meid, Andreas Daniel Gonzalez-Gonzalez, Ana Isabel Dinh, Truc Sophia Blom, Jeanet van den Akker, Marjan Elders, Petra Thiem, Ulrich Küllenberg de Gaudry, Daniela Swart, Karin M A Rudolf, Henrik Bosch-Lenders, Donna Trampisch, Hans J Meerpohl, Joerg J Gerlach, Ferdinand M Flaig, Benno Kom, Ghainsom Snell, Kym I E Perera, Rafael Haefeli, Walter Emil Glasziou, Paul Muth, Christiane |
author_sort | Meid, Andreas Daniel |
collection | PubMed |
description | OBJECTIVE: To explore factors that potentially impact external validation performance while developing and validating a prognostic model for hospital admissions (HAs) in complex older general practice patients. STUDY DESIGN AND SETTING: Using individual participant data from four cluster-randomised trials conducted in the Netherlands and Germany, we used logistic regression to develop a prognostic model to predict all-cause HAs within a 6-month follow-up period. A stratified intercept was used to account for heterogeneity in baseline risk between the studies. The model was validated both internally and by using internal-external cross-validation (IECV). RESULTS: Prior HAs, physical components of the health-related quality of life comorbidity index, and medication-related variables were used in the final model. While achieving moderate discriminatory performance, internal bootstrap validation revealed a pronounced risk of overfitting. The results of the IECV, in which calibration was highly variable even after accounting for between-study heterogeneity, agreed with this finding. Heterogeneity was equally reflected in differing baseline risk, predictor effects and absolute risk predictions. CONCLUSIONS: Predictor effect heterogeneity and differing baseline risk can explain the limited external performance of HA prediction models. With such drivers known, model adjustments in external validation settings (eg, intercept recalibration, complete updating) can be applied more purposefully. TRIAL REGISTRATION NUMBER: PROSPERO id: CRD42018088129. |
format | Online Article Text |
id | pubmed-8340284 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | BMJ Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-83402842021-08-20 Predicting hospital admissions from individual patient data (IPD): an applied example to explore key elements driving external validity Meid, Andreas Daniel Gonzalez-Gonzalez, Ana Isabel Dinh, Truc Sophia Blom, Jeanet van den Akker, Marjan Elders, Petra Thiem, Ulrich Küllenberg de Gaudry, Daniela Swart, Karin M A Rudolf, Henrik Bosch-Lenders, Donna Trampisch, Hans J Meerpohl, Joerg J Gerlach, Ferdinand M Flaig, Benno Kom, Ghainsom Snell, Kym I E Perera, Rafael Haefeli, Walter Emil Glasziou, Paul Muth, Christiane BMJ Open General practice / Family practice OBJECTIVE: To explore factors that potentially impact external validation performance while developing and validating a prognostic model for hospital admissions (HAs) in complex older general practice patients. STUDY DESIGN AND SETTING: Using individual participant data from four cluster-randomised trials conducted in the Netherlands and Germany, we used logistic regression to develop a prognostic model to predict all-cause HAs within a 6-month follow-up period. A stratified intercept was used to account for heterogeneity in baseline risk between the studies. The model was validated both internally and by using internal-external cross-validation (IECV). RESULTS: Prior HAs, physical components of the health-related quality of life comorbidity index, and medication-related variables were used in the final model. While achieving moderate discriminatory performance, internal bootstrap validation revealed a pronounced risk of overfitting. The results of the IECV, in which calibration was highly variable even after accounting for between-study heterogeneity, agreed with this finding. Heterogeneity was equally reflected in differing baseline risk, predictor effects and absolute risk predictions. CONCLUSIONS: Predictor effect heterogeneity and differing baseline risk can explain the limited external performance of HA prediction models. With such drivers known, model adjustments in external validation settings (eg, intercept recalibration, complete updating) can be applied more purposefully. TRIAL REGISTRATION NUMBER: PROSPERO id: CRD42018088129. BMJ Publishing Group 2021-08-04 /pmc/articles/PMC8340284/ /pubmed/34348947 http://dx.doi.org/10.1136/bmjopen-2020-045572 Text en © Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) . |
spellingShingle | General practice / Family practice Meid, Andreas Daniel Gonzalez-Gonzalez, Ana Isabel Dinh, Truc Sophia Blom, Jeanet van den Akker, Marjan Elders, Petra Thiem, Ulrich Küllenberg de Gaudry, Daniela Swart, Karin M A Rudolf, Henrik Bosch-Lenders, Donna Trampisch, Hans J Meerpohl, Joerg J Gerlach, Ferdinand M Flaig, Benno Kom, Ghainsom Snell, Kym I E Perera, Rafael Haefeli, Walter Emil Glasziou, Paul Muth, Christiane Predicting hospital admissions from individual patient data (IPD): an applied example to explore key elements driving external validity |
title | Predicting hospital admissions from individual patient data (IPD): an applied example to explore key elements driving external validity |
title_full | Predicting hospital admissions from individual patient data (IPD): an applied example to explore key elements driving external validity |
title_fullStr | Predicting hospital admissions from individual patient data (IPD): an applied example to explore key elements driving external validity |
title_full_unstemmed | Predicting hospital admissions from individual patient data (IPD): an applied example to explore key elements driving external validity |
title_short | Predicting hospital admissions from individual patient data (IPD): an applied example to explore key elements driving external validity |
title_sort | predicting hospital admissions from individual patient data (ipd): an applied example to explore key elements driving external validity |
topic | General practice / Family practice |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8340284/ https://www.ncbi.nlm.nih.gov/pubmed/34348947 http://dx.doi.org/10.1136/bmjopen-2020-045572 |
work_keys_str_mv | AT meidandreasdaniel predictinghospitaladmissionsfromindividualpatientdataipdanappliedexampletoexplorekeyelementsdrivingexternalvalidity AT gonzalezgonzalezanaisabel predictinghospitaladmissionsfromindividualpatientdataipdanappliedexampletoexplorekeyelementsdrivingexternalvalidity AT dinhtrucsophia predictinghospitaladmissionsfromindividualpatientdataipdanappliedexampletoexplorekeyelementsdrivingexternalvalidity AT blomjeanet predictinghospitaladmissionsfromindividualpatientdataipdanappliedexampletoexplorekeyelementsdrivingexternalvalidity AT vandenakkermarjan predictinghospitaladmissionsfromindividualpatientdataipdanappliedexampletoexplorekeyelementsdrivingexternalvalidity AT elderspetra predictinghospitaladmissionsfromindividualpatientdataipdanappliedexampletoexplorekeyelementsdrivingexternalvalidity AT thiemulrich predictinghospitaladmissionsfromindividualpatientdataipdanappliedexampletoexplorekeyelementsdrivingexternalvalidity AT kullenbergdegaudrydaniela predictinghospitaladmissionsfromindividualpatientdataipdanappliedexampletoexplorekeyelementsdrivingexternalvalidity AT swartkarinma predictinghospitaladmissionsfromindividualpatientdataipdanappliedexampletoexplorekeyelementsdrivingexternalvalidity AT rudolfhenrik predictinghospitaladmissionsfromindividualpatientdataipdanappliedexampletoexplorekeyelementsdrivingexternalvalidity AT boschlendersdonna predictinghospitaladmissionsfromindividualpatientdataipdanappliedexampletoexplorekeyelementsdrivingexternalvalidity AT trampischhansj predictinghospitaladmissionsfromindividualpatientdataipdanappliedexampletoexplorekeyelementsdrivingexternalvalidity AT meerpohljoergj predictinghospitaladmissionsfromindividualpatientdataipdanappliedexampletoexplorekeyelementsdrivingexternalvalidity AT gerlachferdinandm predictinghospitaladmissionsfromindividualpatientdataipdanappliedexampletoexplorekeyelementsdrivingexternalvalidity AT flaigbenno predictinghospitaladmissionsfromindividualpatientdataipdanappliedexampletoexplorekeyelementsdrivingexternalvalidity AT komghainsom predictinghospitaladmissionsfromindividualpatientdataipdanappliedexampletoexplorekeyelementsdrivingexternalvalidity AT snellkymie predictinghospitaladmissionsfromindividualpatientdataipdanappliedexampletoexplorekeyelementsdrivingexternalvalidity AT pererarafael predictinghospitaladmissionsfromindividualpatientdataipdanappliedexampletoexplorekeyelementsdrivingexternalvalidity AT haefeliwalteremil predictinghospitaladmissionsfromindividualpatientdataipdanappliedexampletoexplorekeyelementsdrivingexternalvalidity AT glaszioupaul predictinghospitaladmissionsfromindividualpatientdataipdanappliedexampletoexplorekeyelementsdrivingexternalvalidity AT muthchristiane predictinghospitaladmissionsfromindividualpatientdataipdanappliedexampletoexplorekeyelementsdrivingexternalvalidity |