Cargando…

Predicting hospital admissions from individual patient data (IPD): an applied example to explore key elements driving external validity

OBJECTIVE: To explore factors that potentially impact external validation performance while developing and validating a prognostic model for hospital admissions (HAs) in complex older general practice patients. STUDY DESIGN AND SETTING: Using individual participant data from four cluster-randomised...

Descripción completa

Detalles Bibliográficos
Autores principales: Meid, Andreas Daniel, Gonzalez-Gonzalez, Ana Isabel, Dinh, Truc Sophia, Blom, Jeanet, van den Akker, Marjan, Elders, Petra, Thiem, Ulrich, Küllenberg de Gaudry, Daniela, Swart, Karin M A, Rudolf, Henrik, Bosch-Lenders, Donna, Trampisch, Hans J, Meerpohl, Joerg J, Gerlach, Ferdinand M, Flaig, Benno, Kom, Ghainsom, Snell, Kym I E, Perera, Rafael, Haefeli, Walter Emil, Glasziou, Paul, Muth, Christiane
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BMJ Publishing Group 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8340284/
https://www.ncbi.nlm.nih.gov/pubmed/34348947
http://dx.doi.org/10.1136/bmjopen-2020-045572
_version_ 1783733746466291712
author Meid, Andreas Daniel
Gonzalez-Gonzalez, Ana Isabel
Dinh, Truc Sophia
Blom, Jeanet
van den Akker, Marjan
Elders, Petra
Thiem, Ulrich
Küllenberg de Gaudry, Daniela
Swart, Karin M A
Rudolf, Henrik
Bosch-Lenders, Donna
Trampisch, Hans J
Meerpohl, Joerg J
Gerlach, Ferdinand M
Flaig, Benno
Kom, Ghainsom
Snell, Kym I E
Perera, Rafael
Haefeli, Walter Emil
Glasziou, Paul
Muth, Christiane
author_facet Meid, Andreas Daniel
Gonzalez-Gonzalez, Ana Isabel
Dinh, Truc Sophia
Blom, Jeanet
van den Akker, Marjan
Elders, Petra
Thiem, Ulrich
Küllenberg de Gaudry, Daniela
Swart, Karin M A
Rudolf, Henrik
Bosch-Lenders, Donna
Trampisch, Hans J
Meerpohl, Joerg J
Gerlach, Ferdinand M
Flaig, Benno
Kom, Ghainsom
Snell, Kym I E
Perera, Rafael
Haefeli, Walter Emil
Glasziou, Paul
Muth, Christiane
author_sort Meid, Andreas Daniel
collection PubMed
description OBJECTIVE: To explore factors that potentially impact external validation performance while developing and validating a prognostic model for hospital admissions (HAs) in complex older general practice patients. STUDY DESIGN AND SETTING: Using individual participant data from four cluster-randomised trials conducted in the Netherlands and Germany, we used logistic regression to develop a prognostic model to predict all-cause HAs within a 6-month follow-up period. A stratified intercept was used to account for heterogeneity in baseline risk between the studies. The model was validated both internally and by using internal-external cross-validation (IECV). RESULTS: Prior HAs, physical components of the health-related quality of life comorbidity index, and medication-related variables were used in the final model. While achieving moderate discriminatory performance, internal bootstrap validation revealed a pronounced risk of overfitting. The results of the IECV, in which calibration was highly variable even after accounting for between-study heterogeneity, agreed with this finding. Heterogeneity was equally reflected in differing baseline risk, predictor effects and absolute risk predictions. CONCLUSIONS: Predictor effect heterogeneity and differing baseline risk can explain the limited external performance of HA prediction models. With such drivers known, model adjustments in external validation settings (eg, intercept recalibration, complete updating) can be applied more purposefully. TRIAL REGISTRATION NUMBER: PROSPERO id: CRD42018088129.
format Online
Article
Text
id pubmed-8340284
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher BMJ Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-83402842021-08-20 Predicting hospital admissions from individual patient data (IPD): an applied example to explore key elements driving external validity Meid, Andreas Daniel Gonzalez-Gonzalez, Ana Isabel Dinh, Truc Sophia Blom, Jeanet van den Akker, Marjan Elders, Petra Thiem, Ulrich Küllenberg de Gaudry, Daniela Swart, Karin M A Rudolf, Henrik Bosch-Lenders, Donna Trampisch, Hans J Meerpohl, Joerg J Gerlach, Ferdinand M Flaig, Benno Kom, Ghainsom Snell, Kym I E Perera, Rafael Haefeli, Walter Emil Glasziou, Paul Muth, Christiane BMJ Open General practice / Family practice OBJECTIVE: To explore factors that potentially impact external validation performance while developing and validating a prognostic model for hospital admissions (HAs) in complex older general practice patients. STUDY DESIGN AND SETTING: Using individual participant data from four cluster-randomised trials conducted in the Netherlands and Germany, we used logistic regression to develop a prognostic model to predict all-cause HAs within a 6-month follow-up period. A stratified intercept was used to account for heterogeneity in baseline risk between the studies. The model was validated both internally and by using internal-external cross-validation (IECV). RESULTS: Prior HAs, physical components of the health-related quality of life comorbidity index, and medication-related variables were used in the final model. While achieving moderate discriminatory performance, internal bootstrap validation revealed a pronounced risk of overfitting. The results of the IECV, in which calibration was highly variable even after accounting for between-study heterogeneity, agreed with this finding. Heterogeneity was equally reflected in differing baseline risk, predictor effects and absolute risk predictions. CONCLUSIONS: Predictor effect heterogeneity and differing baseline risk can explain the limited external performance of HA prediction models. With such drivers known, model adjustments in external validation settings (eg, intercept recalibration, complete updating) can be applied more purposefully. TRIAL REGISTRATION NUMBER: PROSPERO id: CRD42018088129. BMJ Publishing Group 2021-08-04 /pmc/articles/PMC8340284/ /pubmed/34348947 http://dx.doi.org/10.1136/bmjopen-2020-045572 Text en © Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) .
spellingShingle General practice / Family practice
Meid, Andreas Daniel
Gonzalez-Gonzalez, Ana Isabel
Dinh, Truc Sophia
Blom, Jeanet
van den Akker, Marjan
Elders, Petra
Thiem, Ulrich
Küllenberg de Gaudry, Daniela
Swart, Karin M A
Rudolf, Henrik
Bosch-Lenders, Donna
Trampisch, Hans J
Meerpohl, Joerg J
Gerlach, Ferdinand M
Flaig, Benno
Kom, Ghainsom
Snell, Kym I E
Perera, Rafael
Haefeli, Walter Emil
Glasziou, Paul
Muth, Christiane
Predicting hospital admissions from individual patient data (IPD): an applied example to explore key elements driving external validity
title Predicting hospital admissions from individual patient data (IPD): an applied example to explore key elements driving external validity
title_full Predicting hospital admissions from individual patient data (IPD): an applied example to explore key elements driving external validity
title_fullStr Predicting hospital admissions from individual patient data (IPD): an applied example to explore key elements driving external validity
title_full_unstemmed Predicting hospital admissions from individual patient data (IPD): an applied example to explore key elements driving external validity
title_short Predicting hospital admissions from individual patient data (IPD): an applied example to explore key elements driving external validity
title_sort predicting hospital admissions from individual patient data (ipd): an applied example to explore key elements driving external validity
topic General practice / Family practice
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8340284/
https://www.ncbi.nlm.nih.gov/pubmed/34348947
http://dx.doi.org/10.1136/bmjopen-2020-045572
work_keys_str_mv AT meidandreasdaniel predictinghospitaladmissionsfromindividualpatientdataipdanappliedexampletoexplorekeyelementsdrivingexternalvalidity
AT gonzalezgonzalezanaisabel predictinghospitaladmissionsfromindividualpatientdataipdanappliedexampletoexplorekeyelementsdrivingexternalvalidity
AT dinhtrucsophia predictinghospitaladmissionsfromindividualpatientdataipdanappliedexampletoexplorekeyelementsdrivingexternalvalidity
AT blomjeanet predictinghospitaladmissionsfromindividualpatientdataipdanappliedexampletoexplorekeyelementsdrivingexternalvalidity
AT vandenakkermarjan predictinghospitaladmissionsfromindividualpatientdataipdanappliedexampletoexplorekeyelementsdrivingexternalvalidity
AT elderspetra predictinghospitaladmissionsfromindividualpatientdataipdanappliedexampletoexplorekeyelementsdrivingexternalvalidity
AT thiemulrich predictinghospitaladmissionsfromindividualpatientdataipdanappliedexampletoexplorekeyelementsdrivingexternalvalidity
AT kullenbergdegaudrydaniela predictinghospitaladmissionsfromindividualpatientdataipdanappliedexampletoexplorekeyelementsdrivingexternalvalidity
AT swartkarinma predictinghospitaladmissionsfromindividualpatientdataipdanappliedexampletoexplorekeyelementsdrivingexternalvalidity
AT rudolfhenrik predictinghospitaladmissionsfromindividualpatientdataipdanappliedexampletoexplorekeyelementsdrivingexternalvalidity
AT boschlendersdonna predictinghospitaladmissionsfromindividualpatientdataipdanappliedexampletoexplorekeyelementsdrivingexternalvalidity
AT trampischhansj predictinghospitaladmissionsfromindividualpatientdataipdanappliedexampletoexplorekeyelementsdrivingexternalvalidity
AT meerpohljoergj predictinghospitaladmissionsfromindividualpatientdataipdanappliedexampletoexplorekeyelementsdrivingexternalvalidity
AT gerlachferdinandm predictinghospitaladmissionsfromindividualpatientdataipdanappliedexampletoexplorekeyelementsdrivingexternalvalidity
AT flaigbenno predictinghospitaladmissionsfromindividualpatientdataipdanappliedexampletoexplorekeyelementsdrivingexternalvalidity
AT komghainsom predictinghospitaladmissionsfromindividualpatientdataipdanappliedexampletoexplorekeyelementsdrivingexternalvalidity
AT snellkymie predictinghospitaladmissionsfromindividualpatientdataipdanappliedexampletoexplorekeyelementsdrivingexternalvalidity
AT pererarafael predictinghospitaladmissionsfromindividualpatientdataipdanappliedexampletoexplorekeyelementsdrivingexternalvalidity
AT haefeliwalteremil predictinghospitaladmissionsfromindividualpatientdataipdanappliedexampletoexplorekeyelementsdrivingexternalvalidity
AT glaszioupaul predictinghospitaladmissionsfromindividualpatientdataipdanappliedexampletoexplorekeyelementsdrivingexternalvalidity
AT muthchristiane predictinghospitaladmissionsfromindividualpatientdataipdanappliedexampletoexplorekeyelementsdrivingexternalvalidity