Cargando…
Role of Aryl Amphiphile Hydrophobe Size on the Concentration and Stability of Graphene Nanoplatelet Dispersions
[Image: see text] Graphene nanoplatelets (GNPs) are stable and relatively inexpensive compared to single-layer graphene sheets and carbon nanotubes and are useful in diverse electronic, optoelectronic, and mechanical applications. Solution-state processing of the active material is desired in most o...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical
Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8340392/ https://www.ncbi.nlm.nih.gov/pubmed/34368591 http://dx.doi.org/10.1021/acsomega.1c03126 |
Sumario: | [Image: see text] Graphene nanoplatelets (GNPs) are stable and relatively inexpensive compared to single-layer graphene sheets and carbon nanotubes and are useful in diverse electronic, optoelectronic, and mechanical applications. Solution-state processing of the active material is desired in most of the applications mentioned above, and thus, there is great interest in increasing the concentration and stability of GNP suspension. Herein, to elucidate the role of the stabilizer structural parameters on the concentration and stability of GNP dispersions, we synthesized and used a series of aryl amphiphiles (ArAs) of varying aryl hydrophobe sizes and geometries. The ArAs were found to generate GNP dispersions with concentrations ranging from 0.05 to 0.13 mg mL(–1) depending on the size of the aryl hydrophobe. The ArAs’ hydrophobe size played a key role in determining the concentration of GNP suspension, while ArAs’ critical aggregation concentration and solubility limits had no impact on the GNP suspension concentration. Most of the studied ArAs work similar to methylcellulose, the previously reported best performing stabilizer . Moreover, the ArAs stabilized the GNP suspension better than methylcellulose and were able to form stable dispersions for up to 6 h. Raman studies indicate that the quality of the GNPs did not degrade during the dispersion process. These findings will aid in the development of design rules for next-generation stabilizers. |
---|