Cargando…
CpACpP: In Silico Cell-Penetrating Anticancer Peptide Prediction Using a Novel Bioinformatics Framework
[Image: see text] Cell-penetrating anticancer peptides (Cp-ACPs) are considered promising candidates in solid tumor and hematologic cancer therapies. Current approaches for the design and discovery of Cp-ACPs trust the expensive high-throughput screenings that often give rise to multiple obstacles,...
Autores principales: | Nasiri, Farid, Atanaki, Fereshteh Fallah, Behrouzi, Saman, Kavousi, Kaveh, Bagheri, Mojtaba |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8340416/ https://www.ncbi.nlm.nih.gov/pubmed/34368571 http://dx.doi.org/10.1021/acsomega.1c02569 |
Ejemplares similares
-
BIPEP: Sequence-based Prediction of Biofilm Inhibitory
Peptides Using a Combination of NMR and Physicochemical Descriptors
por: Fallah Atanaki, Fereshteh, et al.
Publicado: (2020) -
miR-548x and miR-4698 controlled cell proliferation by affecting the PI3K/AKT signaling pathway in Glioblastoma cell lines
por: kalhori, Mohammad Reza, et al.
Publicado: (2020) -
MCIC: Automated Identification of Cellulases From Metagenomic Data and Characterization Based on Temperature and pH Dependence
por: Foroozandeh Shahraki, Mehdi, et al.
Publicado: (2020) -
Co-abundance analysis reveals hidden players associated with high methane yield phenotype in sheep rumen microbiome
por: Ghanbari Maman, Leila, et al.
Publicado: (2020) -
EnACP: An Ensemble Learning Model for Identification of Anticancer Peptides
por: Ge, Ruiquan, et al.
Publicado: (2020)