Cargando…
Solid-Phase Stereocontrolled Synthesis of Oligomeric P-Modified Glycosyl Phosphate Derivatives Using the Oxazaphospholidine Method
[Image: see text] Glycosyl phosphate repeating units can be found in the glycoconjugates of some bacteria and protozoa parasites. These structures and their P-modified analogs are attractive synthetic targets as antimicrobial, antiparasitic, and vaccine agents. However, P-modified glycosyl phosphate...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8340430/ https://www.ncbi.nlm.nih.gov/pubmed/34368588 http://dx.doi.org/10.1021/acsomega.1c03058 |
Sumario: | [Image: see text] Glycosyl phosphate repeating units can be found in the glycoconjugates of some bacteria and protozoa parasites. These structures and their P-modified analogs are attractive synthetic targets as antimicrobial, antiparasitic, and vaccine agents. However, P-modified glycosyl phosphates exist in different diastereomeric forms due to the chiral phosphorus atoms, whose configuration would highly affect their physiochemical and biochemical properties. In this study, a stereocontrolled method was developed for the synthesis of P-modified glycosyl phosphate repeating units derived from the lipophosphoglycan of Leishmania using the oxazaphospholidine approach. The solid-phase synthesis facilitated the elongation and purification of the glycosyl phosphate derivatives, while two P-modified glycosyl phosphates (boranophosphate and phosphorothioate) were successfully synthesized with up to three repeating units. |
---|