Cargando…

MYBL2-induced PITPNA-AS1 upregulates SIK2 to exert oncogenic function in triple-negative breast cancer through miR-520d-5p and DDX54

BACKGROUND: In recent years, long non-coding RNAs (lncRNAs) have attracted much attention because of its regulatory role in occurrence and progression of tumors, including triple-negative breast cancer (TNBC). LncRNA PITPNA antisense RNA 1 (PITPNA-AS1) has been explored in some cancers, whereas its...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Bolong, Yao, Pingbo, Xiao, Feng, Guo, Jianjin, Wu, Lianghui, Yang, Yong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8340450/
https://www.ncbi.nlm.nih.gov/pubmed/34353336
http://dx.doi.org/10.1186/s12967-021-02956-6
Descripción
Sumario:BACKGROUND: In recent years, long non-coding RNAs (lncRNAs) have attracted much attention because of its regulatory role in occurrence and progression of tumors, including triple-negative breast cancer (TNBC). LncRNA PITPNA antisense RNA 1 (PITPNA-AS1) has been explored in some cancers, whereas its function and molecular mechanism in TNBC remain unclear. METHODS: PITPNA-AS1 expression in TNBC tissues and cells was determined by RT-qPCR. TNBC cell viability, proliferation, migration, invasion were assessed with CCK-8, colony formation, wound healing, transwell assays. Cell apoptosis was evaluated by flow cytometry. Expression of EMT-related markers was detected by western blot analyses. The molecular mechanism of PITPNA-AS1 was explored by RNA pull down, luciferase reporter, RIP and ChIP assays. RESULTS: PITPNA-AS1 showed high expression levels in TNBC tissues and cells. PITPNA-AS1 knockdown suppressed TNBC cell viability, proliferation, migration, invasion in vitro and inhibited xenograft tumor growth in mice. Mechanistically, PITPNA-AS1 upregulated SIK2 expression by sponging miR-520d-5p and recruiting DDX54 protein. Results of rescue assays suggested that the inhibitive effects of silenced PITPNA-AS1 on TNBC cellular processes were partially rescued by overexpressing SIK2 or combination of miR-520d-5p inhibition and DDX54 overexpression. More importantly, we found that the upregulation of PITPNA-AS1 in TNBC cells was attributed to transcription factor MYBL2. CONCLUSION: PITPNA-AS1 activated by MYBL2 plays an oncogenic role in TNBC through upregulating SIK2. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12967-021-02956-6.