Cargando…
Integrative, multi-omics, analysis of blood samples improves model predictions: applications to cancer
BACKGROUND: Cancer genomic studies often include data collected from several omics platforms. Each omics data source contributes to the understanding of the underlying biological process via source specific (“individual”) patterns of variability. At the same time, statistical associations and potent...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8340537/ https://www.ncbi.nlm.nih.gov/pubmed/34353282 http://dx.doi.org/10.1186/s12859-021-04296-0 |
_version_ | 1783733792774553600 |
---|---|
author | Ponzi, Erica Thoresen, Magne Haugdahl Nøst, Therese Møllersen, Kajsa |
author_facet | Ponzi, Erica Thoresen, Magne Haugdahl Nøst, Therese Møllersen, Kajsa |
author_sort | Ponzi, Erica |
collection | PubMed |
description | BACKGROUND: Cancer genomic studies often include data collected from several omics platforms. Each omics data source contributes to the understanding of the underlying biological process via source specific (“individual”) patterns of variability. At the same time, statistical associations and potential interactions among the different data sources can reveal signals from common biological processes that might not be identified by single source analyses. These common patterns of variability are referred to as “shared” or “joint”. In this work, we show how the use of joint and individual components can lead to better predictive models, and to a deeper understanding of the biological process at hand. We identify joint and individual contributions of DNA methylation, miRNA and mRNA expression collected from blood samples in a lung cancer case–control study nested within the Norwegian Women and Cancer (NOWAC) cohort study, and we use such components to build prediction models for case–control and metastatic status. To assess the quality of predictions, we compare models based on simultaneous, integrative analysis of multi-source omics data to a standard non-integrative analysis of each single omics dataset, and to penalized regression models. Additionally, we apply the proposed approach to a breast cancer dataset from The Cancer Genome Atlas. RESULTS: Our results show how an integrative analysis that preserves both components of variation is more appropriate than standard multi-omics analyses that are not based on such a distinction. Both joint and individual components are shown to contribute to a better quality of model predictions, and facilitate the interpretation of the underlying biological processes in lung cancer development. CONCLUSIONS: In the presence of multiple omics data sources, we recommend the use of data integration techniques that preserve the joint and individual components across the omics sources. We show how the inclusion of such components increases the quality of model predictions of clinical outcomes. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12859-021-04296-0. |
format | Online Article Text |
id | pubmed-8340537 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-83405372021-08-06 Integrative, multi-omics, analysis of blood samples improves model predictions: applications to cancer Ponzi, Erica Thoresen, Magne Haugdahl Nøst, Therese Møllersen, Kajsa BMC Bioinformatics Research Article BACKGROUND: Cancer genomic studies often include data collected from several omics platforms. Each omics data source contributes to the understanding of the underlying biological process via source specific (“individual”) patterns of variability. At the same time, statistical associations and potential interactions among the different data sources can reveal signals from common biological processes that might not be identified by single source analyses. These common patterns of variability are referred to as “shared” or “joint”. In this work, we show how the use of joint and individual components can lead to better predictive models, and to a deeper understanding of the biological process at hand. We identify joint and individual contributions of DNA methylation, miRNA and mRNA expression collected from blood samples in a lung cancer case–control study nested within the Norwegian Women and Cancer (NOWAC) cohort study, and we use such components to build prediction models for case–control and metastatic status. To assess the quality of predictions, we compare models based on simultaneous, integrative analysis of multi-source omics data to a standard non-integrative analysis of each single omics dataset, and to penalized regression models. Additionally, we apply the proposed approach to a breast cancer dataset from The Cancer Genome Atlas. RESULTS: Our results show how an integrative analysis that preserves both components of variation is more appropriate than standard multi-omics analyses that are not based on such a distinction. Both joint and individual components are shown to contribute to a better quality of model predictions, and facilitate the interpretation of the underlying biological processes in lung cancer development. CONCLUSIONS: In the presence of multiple omics data sources, we recommend the use of data integration techniques that preserve the joint and individual components across the omics sources. We show how the inclusion of such components increases the quality of model predictions of clinical outcomes. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12859-021-04296-0. BioMed Central 2021-08-05 /pmc/articles/PMC8340537/ /pubmed/34353282 http://dx.doi.org/10.1186/s12859-021-04296-0 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Article Ponzi, Erica Thoresen, Magne Haugdahl Nøst, Therese Møllersen, Kajsa Integrative, multi-omics, analysis of blood samples improves model predictions: applications to cancer |
title | Integrative, multi-omics, analysis of blood samples improves model predictions: applications to cancer |
title_full | Integrative, multi-omics, analysis of blood samples improves model predictions: applications to cancer |
title_fullStr | Integrative, multi-omics, analysis of blood samples improves model predictions: applications to cancer |
title_full_unstemmed | Integrative, multi-omics, analysis of blood samples improves model predictions: applications to cancer |
title_short | Integrative, multi-omics, analysis of blood samples improves model predictions: applications to cancer |
title_sort | integrative, multi-omics, analysis of blood samples improves model predictions: applications to cancer |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8340537/ https://www.ncbi.nlm.nih.gov/pubmed/34353282 http://dx.doi.org/10.1186/s12859-021-04296-0 |
work_keys_str_mv | AT ponzierica integrativemultiomicsanalysisofbloodsamplesimprovesmodelpredictionsapplicationstocancer AT thoresenmagne integrativemultiomicsanalysisofbloodsamplesimprovesmodelpredictionsapplicationstocancer AT haugdahlnøsttherese integrativemultiomicsanalysisofbloodsamplesimprovesmodelpredictionsapplicationstocancer AT møllersenkajsa integrativemultiomicsanalysisofbloodsamplesimprovesmodelpredictionsapplicationstocancer |