Cargando…
Towards improving edge quality using combinatorial optimization and a novel skeletonize algorithm
BACKGROUND: Object detection and image segmentation of regions of interest provide the foundation for numerous pipelines across disciplines. Robust and accurate computer vision methods are needed to properly solve image-based tasks. Multiple algorithms have been developed to solely detect edges in i...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8340540/ https://www.ncbi.nlm.nih.gov/pubmed/34353290 http://dx.doi.org/10.1186/s12880-021-00650-z |
Sumario: | BACKGROUND: Object detection and image segmentation of regions of interest provide the foundation for numerous pipelines across disciplines. Robust and accurate computer vision methods are needed to properly solve image-based tasks. Multiple algorithms have been developed to solely detect edges in images. Constrained to the problem of creating a thin, one-pixel wide, edge from a predicted object boundary, we require an algorithm that removes pixels while preserving the topology. Thanks to skeletonize algorithms, an object boundary is transformed into an edge; contrasting uncertainty with exact positions. METHODS: To extract edges from boundaries generated from different algorithms, we present a computational pipeline that relies on: a novel skeletonize algorithm, a non-exhaustive discrete parameter search to find the optimal parameter combination of a specific post-processing pipeline, and an extensive evaluation using three data sets from the medical and natural image domains (kidney boundaries, NYU-Depth V2, BSDS 500). While the skeletonize algorithm was compared to classical topological skeletons, the validity of our post-processing algorithm was evaluated by integrating the original post-processing methods from six different works. RESULTS: Using the state of the art metrics, precision and recall based Signed Distance Error (SDE) and the Intersection over Union bounding box (IOU-box), our results indicate that the SDE metric for these edges is improved up to 2.3 times. CONCLUSIONS: Our work provides guidance for parameter tuning and algorithm selection in the post-processing of predicted object boundaries. |
---|