Cargando…
Correlating dynamic climate conditions and socioeconomic-governmental factors to spatiotemporal spread of COVID-19 via semantic segmentation deep learning analysis
In this study, we develop a deep learning model to forecast the transmission rate of COVID-19 globally, via a proposed G parameter, as a function of fused data features which encompass selected climate conditions, socioeconomic and restrictive governmental factors. A 2-step optimization process is a...
Autores principales: | Chew, Alvin Wei Ze, Wang, Ying, Zhang, Limao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8340571/ https://www.ncbi.nlm.nih.gov/pubmed/34377630 http://dx.doi.org/10.1016/j.scs.2021.103231 |
Ejemplares similares
-
Data-driven multiscale modelling and analysis of COVID-19 spatiotemporal evolution using explainable AI
por: Chew, Alvin Wei Ze, et al.
Publicado: (2022) -
Deep learning modeling of public’s sentiments towards temporal evolution of COVID-19 transmission
por: Wang, Ying, et al.
Publicado: (2022) -
Hybrid deep learning of social media big data for predicting the evolution of COVID-19 transmission
por: Chew, Alvin Wei Ze, et al.
Publicado: (2021) -
Boosting Semantic Segmentation by Conditioning the Backbone with Semantic Boundaries
por: Ishikawa, Haruya, et al.
Publicado: (2023) -
Deep Semantic Segmentation of Angiogenesis Images
por: Ibragimov, Alisher, et al.
Publicado: (2023)