Cargando…
Improved protein structure prediction by deep learning irrespective of co-evolution information
Predicting the tertiary structure of a protein from its primary sequence has been greatly improved by integrating deep learning and co-evolutionary analysis, as shown in CASP13 and CASP14. We describe our latest study of this idea, analyzing the efficacy of network size and co-evolution data and its...
Autores principales: | Xu, Jinbo, Mcpartlon, Matthew, Li, Jin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8340610/ https://www.ncbi.nlm.nih.gov/pubmed/34368623 http://dx.doi.org/10.1038/s42256-021-00348-5 |
Ejemplares similares
-
An end-to-end deep learning method for protein side-chain packing and inverse folding
por: McPartlon, Matthew, et al.
Publicado: (2023) -
Deep template-based protein structure prediction
por: Wu, Fandi, et al.
Publicado: (2021) -
Predicting subcellular location of protein with evolution information and sequence-based deep learning
por: Liao, Zhijun, et al.
Publicado: (2021) -
Protein threading using residue co-variation and deep learning
por: Zhu, Jianwei, et al.
Publicado: (2018) -
Prediction of functional class of novel viral proteins by a statistical learning method irrespective of sequence similarity
por: Han, L.Y., et al.
Publicado: (2005)