Cargando…
Chronic Marijuana Consumption Leading to High-Grade Atrioventricular Block in a Young Male
Cannabis usage is increasing throughout the world for both medicinal and recreational purposes. Several countries and states have legalized cannabis, and physicians can expect to encounter more patients who use or abuse cannabis. Adverse cardiovascular effects of cannabis like myocardial infarction,...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cureus
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8341202/ https://www.ncbi.nlm.nih.gov/pubmed/34367805 http://dx.doi.org/10.7759/cureus.16202 |
Sumario: | Cannabis usage is increasing throughout the world for both medicinal and recreational purposes. Several countries and states have legalized cannabis, and physicians can expect to encounter more patients who use or abuse cannabis. Adverse cardiovascular effects of cannabis like myocardial infarction, cardiomyopathy, and arrhythmias have been well described but bradyarrhythmia is rare and the mechanisms are not well pronounced. A 26-year-old male with a history of chronic cannabis smoking presented with complaints of dizziness and recurrent syncope. The heart rate at presentation was 42 beats per minute and the rest of the physical examination was unremarkable. There was an atrioventricular (AV) block in the ECG and a subsequent electrophysiological study (EPS) showed a high-grade supra-Hisian (nodal) AV block with prolonged His-ventricular (HV) interval. The urinary screen was positive for tetrahydrocannabinol metabolite (11-Nor-9-carboxy THC). After ruling out other possible causes, a diagnosis of high-grade AV block due to chronic cannabis use was made. A dual-chamber pacemaker was implanted and the patient was discharged in stable condition. The arrhythmia did not improve completely at the three-month follow-up. We report a novel finding in cannabis-induced bradyarrhythmia. High-grade AV block with the electrophysiologic determination of the site of conduction blockade has not been reported previously. The mechanism of bradyarrhythmia is thought to be mediated by increased vagal tone. However, prolonged HV interval and persistent nature of block indicate that direct toxic effects of cannabis, through cannabinoid receptors 1 (CB1R), on the cardiac conduction system cannot be ruled out. Also, the possibility of cannabis arteritis involving microvasculature should be kept. |
---|