Cargando…
Crash severity analysis of vulnerable road users using machine learning
Road crash fatality is a universal problem of the transportation system. A massive death toll caused annually due to road crash incidents, and among them, vulnerable road users (VRU) are endangered with high crash severity. This paper focuses on employing machine learning-based classification approa...
Autores principales: | Komol, Md Mostafizur Rahman, Hasan, Md Mahmudul, Elhenawy, Mohammed, Yasmin, Shamsunnahar, Masoud, Mahmoud, Rakotonirainy, Andry |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8341492/ https://www.ncbi.nlm.nih.gov/pubmed/34352026 http://dx.doi.org/10.1371/journal.pone.0255828 |
Ejemplares similares
-
Autonomous Vehicles and Vulnerable Road-Users—Important Considerations and Requirements Based on Crash Data from Two Countries
por: Morris, Andrew Paul, et al.
Publicado: (2021) -
A Novel Crowdsourcing Model for Micro-Mobility Ride-Sharing Systems
por: Elhenawy, Mohammed, et al.
Publicado: (2021) -
Crash severity analysis and risk factors identification based on an alternate data source: a case study of developing country
por: Bhuiyan, Hanif, et al.
Publicado: (2022) -
A framework for testing independence between lane change and cooperative intelligent transportation system
por: Elhenawy, Mohammed, et al.
Publicado: (2020) -
Correction: A framework for testing independence between lane change and cooperative intelligent transportation system
por: Elhenawy, Mohammed, et al.
Publicado: (2021)