Cargando…

Improving information retrieval from electronic health records using dynamic and multi-collaborative filtering

Due to the rapid growth of information available about individual patients, most physicians suffer from information overload and inefficiencies when they review patient information in health information technology systems. In this paper, we present a novel hybrid dynamic and multi-collaborative filt...

Descripción completa

Detalles Bibliográficos
Autores principales: Ning, Xia, Fan, Ziwei, Burgun, Evan, Ren, Zhiyun, Schleyer, Titus
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8341500/
https://www.ncbi.nlm.nih.gov/pubmed/34351962
http://dx.doi.org/10.1371/journal.pone.0255467
Descripción
Sumario:Due to the rapid growth of information available about individual patients, most physicians suffer from information overload and inefficiencies when they review patient information in health information technology systems. In this paper, we present a novel hybrid dynamic and multi-collaborative filtering method to improve information retrieval from electronic health records. This method recommends relevant information from electronic health records to physicians during patient visits. It models information search dynamics using a Markov model. It also leverages the key idea of collaborative filtering, originating from Recommender Systems, for prioritizing information based on various similarities among physicians, patients and information items. We tested this new method using electronic health record data from the Indiana Network for Patient Care, a large, inter-organizational clinical data repository maintained by the Indiana Health Information Exchange. Our experimental results demonstrated that, for top-5 recommendations, our method was able to correctly predict the information in which physicians were interested in 46.7% of all test cases. For top-1 recommendations, the corresponding figure was 24.7%. In addition, the new method was 22.3% better than the conventional Markov model for top-1 recommendations.