Cargando…
Constructing robust and efficient experimental designs in groundwater modeling using a Galerkin method, proper orthogonal decomposition, and metaheuristic algorithms
Estimating parameters accurately in groundwater models for aquifers is challenging because the models are non-explicit solutions of complex partial differential equations. Modern research methods, such as Monte Carlo methods and metaheuristic algorithms, for searching an efficient design to estimate...
Autores principales: | Ushijima, Timothy T., Yeh, William W. G., Wong, Weng Kee |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8341624/ https://www.ncbi.nlm.nih.gov/pubmed/34351931 http://dx.doi.org/10.1371/journal.pone.0254620 |
Ejemplares similares
-
Inverse Analyses with Model Reduction: Proper Orthogonal Decomposition in Structural Mechanics
por: Buljak, Vladimir
Publicado: (2012) -
Optimization of air supply parameters for stratum ventilation based on proper orthogonal decomposition
por: Liu, Yang, et al.
Publicado: (2021) -
Appropriate noise addition to metaheuristic algorithms can enhance their performance
por: Choi, Kwok Pui, et al.
Publicado: (2023) -
Metaheuristics for pharmacometrics
por: Kim, Seongho, et al.
Publicado: (2021) -
Physics-driven proper orthogonal decomposition: A simulation methodology for partial differential equations
por: Pulimeno, Alessandro, et al.
Publicado: (2023)