Cargando…
Multi-EPL: Accurate multi-source domain adaptation
Given multiple source datasets with labels, how can we train a target model with no labeled data? Multi-source domain adaptation (MSDA) aims to train a model using multiple source datasets different from a target dataset in the absence of target data labels. MSDA is a crucial problem applicable to m...
Autores principales: | Lee, Seongmin, Jeon, Hyunsik, Kang, U. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8341625/ https://www.ncbi.nlm.nih.gov/pubmed/34352030 http://dx.doi.org/10.1371/journal.pone.0255754 |
Ejemplares similares
-
Unsupervised multi-source domain adaptation with no observable source data
por: Jeon, Hyunsik, et al.
Publicado: (2021) -
Phytochemistry of Three Ecuadorian Lamiaceae: Lepechinia heteromorpha (Briq.) Epling, Lepechinia radula (Benth.) Epling and Lepechinia paniculata (Kunth) Epling
por: Gilardoni, Gianluca, et al.
Publicado: (2018) -
Target specific functions of EPL interneurons in olfactory circuits
por: Liu, Gary, et al.
Publicado: (2019) -
Phytochemicals of Minthostachys diffusa Epling and Their Health-Promoting Bioactivities
por: Faraone, Immacolata, et al.
Publicado: (2020) -
Multi-Source and Multi-Representation Adaptation for Cross-Domain Electroencephalography Emotion Recognition
por: Cao, Jiangsheng, et al.
Publicado: (2022)