Cargando…
Multi-Omics Data Fusion for Cancer Molecular Subtyping Using Sparse Canonical Correlation Analysis
It is now clear that major malignancies are heterogeneous diseases associated with diverse molecular properties and clinical outcomes, posing a great challenge for more individualized therapy. In the last decade, cancer molecular subtyping studies were mostly based on transcriptomic profiles, ignori...
Autores principales: | Qi, Lin, Wang, Wei, Wu, Tan, Zhu, Lina, He, Lingli, Wang, Xin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8341864/ https://www.ncbi.nlm.nih.gov/pubmed/34367231 http://dx.doi.org/10.3389/fgene.2021.607817 |
Ejemplares similares
-
Identifying Imaging Genetics Biomarkers of Alzheimer’s Disease by Multi-Task Sparse Canonical Correlation Analysis and Regression
por: Ke, Fengchun, et al.
Publicado: (2021) -
Multi-omics data integration for hepatocellular carcinoma subtyping with multi-kernel learning
por: Wang, Jiaying, et al.
Publicado: (2022) -
Multi-Omics Analysis Reveals Novel Subtypes and Driver Genes in Glioblastoma
por: Yuan, Yang, et al.
Publicado: (2020) -
Molecular Subtyping of Cancer Based on Robust Graph Neural Network and Multi-Omics Data Integration
por: Yin, Chaoyi, et al.
Publicado: (2022) -
inMTSCCA: An Integrated Multi-task Sparse Canonical Correlation Analysis for Multi-omic Brain Imaging Genetics
por: Du, Lei, et al.
Publicado: (2023)